added to flag to output the displacement map (takes long to resize back to the original resolution)
c292437
import datetime | |
import os, sys | |
import shutil | |
import re | |
import argparse | |
import subprocess | |
import logging | |
import time | |
import warnings | |
# currentdir = os.path.dirname(os.path.realpath(__file__)) | |
# parentdir = os.path.dirname(currentdir) | |
# sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing | |
import tensorflow as tf | |
import numpy as np | |
import nibabel as nib | |
from scipy.ndimage import gaussian_filter, zoom | |
from skimage.measure import regionprops | |
import SimpleITK as sitk | |
import voxelmorph as vxm | |
from voxelmorph.tf.layers import SpatialTransformer | |
import DeepDeformationMapRegistration.utils.constants as C | |
from DeepDeformationMapRegistration.utils.nifti_utils import save_nifti | |
from DeepDeformationMapRegistration.losses import StructuralSimilarity_simplified, NCC | |
from DeepDeformationMapRegistration.ms_ssim_tf import MultiScaleStructuralSimilarity | |
from DeepDeformationMapRegistration.utils.operators import min_max_norm | |
from DeepDeformationMapRegistration.utils.misc import resize_displacement_map | |
from DeepDeformationMapRegistration.utils.model_utils import get_models_path, load_model | |
from DeepDeformationMapRegistration.utils.logger import LOGGER | |
from importlib.util import find_spec | |
def rigidly_align_images(image_1: str, image_2: str) -> nib.Nifti1Image: | |
""" | |
Rigidly align the images and resample to the same array size, to the dense displacement map is correct | |
""" | |
def resample_to_isotropic(image: sitk.Image) -> sitk.Image: | |
spacing = image.GetSpacing() | |
spacing = min(spacing) | |
resamp_spacing = [spacing] * image.GetDimension() | |
resamp_size = [int(round(or_size*or_space/spacing)) for or_size, or_space in zip(image.GetSize(), image.GetSpacing())] | |
return sitk.Resample(image, | |
resamp_size, sitk.Transform(), sitk.sitkLinear,image.GetOrigin(), | |
resamp_spacing, image.GetDirection(), 0, image.GetPixelID()) | |
image_1 = sitk.ReadImage(image_1, sitk.sitkFloat32) | |
image_2 = sitk.ReadImage(image_2, sitk.sitkFloat32) | |
image_1 = resample_to_isotropic(image_1) | |
image_2 = resample_to_isotropic(image_2) | |
rig_reg = sitk.ImageRegistrationMethod() | |
rig_reg.SetMetricAsMeanSquares() | |
rig_reg.SetOptimizerAsRegularStepGradientDescent(4.0, 0.01, 200) | |
rig_reg.SetInitialTransform(sitk.TranslationTransform(image_1.GetDimension())) | |
rig_reg.SetInterpolator(sitk.sitkLinear) | |
print('Running rigid registration...') | |
rig_reg_trf = rig_reg.Execute(image_1, image_2) | |
print('Rigid registration completed\n----------------------------') | |
print('Optimizer stop condition: {}'.format(rig_reg.GetOptimizerStopConditionDescription())) | |
print('Iteration: {}'.format(rig_reg.GetOptimizerIteration())) | |
print('Metric value: {}'.format(rig_reg.GetMetricValue())) | |
resampler = sitk.ResampleImageFilter() | |
resampler.SetReferenceImage(image_1) | |
resampler.SetInterpolator(sitk.sitkLinear) | |
resampler.SetDefaultPixelValue(100) | |
resampler.SetTransform(rig_reg_trf) | |
image_2 = resampler.Execute(image_2) | |
# TODO: Build a common image to hold both image_1 and image_2 | |
def pad_images(image_1: nib.Nifti1Image, image_2: nib.Nifti1Image): | |
""" | |
Align image_1 and image_2 by the top left corner and pad them to the largest dimensions along the three axes | |
""" | |
joint_image_shape = np.maximum(image_1.shape, image_2.shape) | |
pad_1 = [[0, p] for p in joint_image_shape - image_1.shape] | |
pad_2 = [[0, p] for p in joint_image_shape - image_2.shape] | |
image_1_padded = np.pad(image_1.dataobj, pad_1, mode='edge').astype(np.float32) | |
image_2_padded = np.pad(image_2.dataobj, pad_2, mode='edge').astype(np.float32) | |
return image_1_padded, image_2_padded | |
def pad_crop_to_original_shape(crop_image: np.asarray, output_shape: [tuple, np.asarray], top_left_corner: [tuple, np.asarray]): | |
""" | |
Pad crop_image so the output image has output_shape with the crop where it originally was found | |
""" | |
output_shape = np.asarray(output_shape) | |
top_left_corner = np.asarray(top_left_corner) | |
pad = [[c, o - (c + i)] for c, o, i in zip(top_left_corner[:3], output_shape[:3], crop_image.shape[:3])] | |
if len(crop_image.shape) == 4: | |
pad += [[0, 0]] | |
return np.pad(crop_image, pad, mode='constant', constant_values=np.min(crop_image)).astype(crop_image.dtype) | |
def pad_displacement_map(disp_map: np.ndarray, crop_min: np.ndarray, crop_max: np.ndarray, output_shape: (np.ndarray, list)) -> np.ndarray: | |
ret_val = disp_map | |
if np.all([d != i for d, i in zip(disp_map.shape[:3], output_shape)]): | |
padding = [[crop_min[i], max(0, output_shape[i] - crop_max[i])] for i in range(3)] + [[0, 0]] | |
ret_val = np.pad(disp_map, padding, mode='constant') | |
return ret_val | |
def run_livermask(input_image_path, outputdir, filename: str = 'segmentation') -> np.ndarray: | |
assert find_spec('livermask'), 'Livermask is not available' | |
LOGGER.info('Getting parenchyma segmentations...') | |
shutil.copy2(input_image_path, os.path.join(outputdir, f'{filename}.nii.gz')) | |
livermask_cmd = "{} -m livermask.livermask --input {} --output {}".format(sys.executable, | |
input_image_path, | |
os.path.join(outputdir, | |
f'{filename}.nii.gz')) | |
subprocess.run(livermask_cmd) | |
LOGGER.info('done!') | |
segmentation_path = os.path.join(outputdir, f'{filename}.nii.gz') | |
return np.asarray(nib.load(segmentation_path).dataobj, dtype=int) | |
def debug_save_image(image: (np.ndarray, nib.Nifti1Image), filename: str, outputdir: str, debug: bool = True): | |
def disp_map_modulus(disp_map, scale: float = None): | |
disp_map_mod = np.sqrt(np.sum(np.power(disp_map, 2), -1)) | |
if scale: | |
min_disp = np.min(disp_map_mod) | |
max_disp = np.max(disp_map_mod) | |
disp_map_mod = disp_map_mod - min_disp / (max_disp - min_disp) | |
disp_map_mod *= scale | |
LOGGER.debug('Scaled displacement map to [0., 1.] range') | |
return disp_map_mod | |
if debug: | |
os.makedirs(os.path.join(outputdir, 'debug'), exist_ok=True) | |
if image.shape[-1] > 1: | |
image = disp_map_modulus(image, 1.) | |
save_nifti(image, os.path.join(outputdir, 'debug', filename+'.nii.gz'), verbose=False) | |
LOGGER.debug(f'Saved {filename} at {os.path.join(outputdir, filename + ".nii.gz")}') | |
def get_roi(image_filepath: str, | |
compute_segmentation: bool, | |
outputdir: str, | |
filename_filepath: str = 'segmentation', | |
segmentation_file: str = None, | |
debug: bool = False) -> list: | |
segm = None | |
if segmentation_file is None and compute_segmentation: | |
LOGGER.info(f'Computing segmentation using livermask. Only for liver in abdominal CTs') | |
try: | |
segm = run_livermask(image_filepath, outputdir, filename_filepath) | |
LOGGER.info(f'Loaded segmentation using livermask from {os.path.join(outputdir, filename_filepath)}') | |
except (AssertionError, FileNotFoundError) as er: | |
LOGGER.warning(er) | |
LOGGER.warning('No segmentation provided! Using the full volume') | |
pass | |
elif segmentation_file is not None: | |
segm = np.asarray(nib.load(segmentation_file).dataobj, dtype=int) | |
LOGGER.info(f'Loaded fixed segmentation from {segmentation_file}') | |
else: | |
LOGGER.warning('No segmentation provided! Using the full volume') | |
if segm is not None: | |
segm[segm > 0] = 1 | |
ret_val = regionprops(segm)[0].bbox | |
debug_save_image(segm, f'img_1_{filename_filepath}', outputdir, debug) | |
else: | |
ret_val = [0, 0, 0] + list(nib.load(image_filepath).shape[:3]) | |
LOGGER.debug(f'ROI found at coordinates {ret_val}') | |
return ret_val | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-f', '--fixed', type=str, help='Path to fixed image file (NIfTI)') | |
parser.add_argument('-m', '--moving', type=str, help='Path to moving segmentation image file (NIfTI)', default=None) | |
parser.add_argument('-F', '--fixedsegm', type=str, help='Path to fixed image segmentation file(NIfTI)', | |
default=None) | |
parser.add_argument('-M', '--movingsegm', type=str, help='Path to moving image file (NIfTI)') | |
parser.add_argument('-o', '--outputdir', type=str, help='Output directory', default='./Registration_output') | |
parser.add_argument('-a', '--anatomy', type=str, help='Anatomical structure: liver (L) (Default) or brain (B)', | |
default='L') | |
parser.add_argument('-s', '--make-segmentation', action='store_true', help='Try to create a segmentation for liver in CT images', default=False) | |
parser.add_argument('--gpu', type=int, | |
help='In case of multi-GPU systems, limits the execution to the defined GPU number', | |
default=None) | |
parser.add_argument('--model', type=str, help='Which model to use: BL-N, BL-S, SG-ND, SG-NSD, UW-NSD, UW-NSDH', | |
default='UW-NSD') | |
parser.add_argument('-d', '--debug', action='store_true', help='Produce additional debug information', default=False) | |
parser.add_argument('-c', '--clear-outputdir', action='store_true', help='Clear output folder if this has content', default=False) | |
parser.add_argument('--original-resolution', action='store_true', | |
help='Re-scale the displacement map to the originla resolution and apply it to the original moving image. WARNING: longer processing time.', | |
default=False) | |
parser.add_argument('--save-displacement-map', action='store_true', help='Save the displacement map. An NPZ file will be created.', | |
default=False) | |
args = parser.parse_args() | |
assert os.path.exists(args.fixed), 'Fixed image not found' | |
assert os.path.exists(args.moving), 'Moving image not found' | |
assert args.model in C.MODEL_TYPES.keys(), 'Invalid model type' | |
assert args.anatomy in C.ANATOMIES.keys(), 'Invalid anatomy option' | |
if os.path.exists(args.outputdir) and len(os.listdir(args.outputdir)): | |
if args.clear_outputdir: | |
erase = 'y' | |
else: | |
erase = input('Output directory is not empty, erase content? (y/n)') | |
if erase.lower() in ['y', 'yes']: | |
shutil.rmtree(args.outputdir, ignore_errors=True) | |
print('Erased directory: ' + args.outputdir) | |
elif erase.lower() in ['n', 'no']: | |
args.outputdir = os.path.join(args.outputdir, datetime.datetime.now().strftime('%H%M%S_%Y%m%d')) | |
print('New output directory: ' + args.outputdir) | |
os.makedirs(args.outputdir, exist_ok=True) | |
log_format = '%(asctime)s [%(levelname)s]:\t%(message)s' | |
logging.basicConfig(filename=os.path.join(args.outputdir, 'log.log'), filemode='w', | |
format=log_format, datefmt='%Y-%m-%d %H:%M:%S') | |
stdout_handler = logging.StreamHandler(sys.stdout) | |
stdout_handler.setFormatter(logging.Formatter(log_format, datefmt='%Y-%m-%d %H:%M:%S')) | |
LOGGER.addHandler(stdout_handler) | |
if isinstance(args.gpu, int): | |
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' | |
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) # Check availability before running using 'nvidia-smi' | |
LOGGER.setLevel('INFO') | |
if args.debug: | |
LOGGER.setLevel('DEBUG') | |
LOGGER.debug('DEBUG MODE ENABLED') | |
if args.original_resolution: | |
LOGGER.info('The results will be rescaled back to the original image resolution. ' | |
'Expect longer post-processing times.') | |
else: | |
LOGGER.info(f'The results will NOT be rescaled. Output shape will be {C.IMG_SHAPE[:3]}.') | |
# Load the file and preprocess it | |
LOGGER.info('Loading image files') | |
fixed_image_or = nib.load(args.fixed) | |
moving_image_or = nib.load(args.moving) | |
moving_image_header = moving_image_or.header.copy() | |
image_shape_or = np.asarray(fixed_image_or.shape) | |
fixed_image_or, moving_image_or = pad_images(fixed_image_or, moving_image_or) | |
fixed_image_or = fixed_image_or[..., np.newaxis] # add channel dim | |
moving_image_or = moving_image_or[..., np.newaxis] # add channel dim | |
debug_save_image(fixed_image_or, 'img_0_loaded_fix_image', args.outputdir, args.debug) | |
debug_save_image(moving_image_or, 'img_0_loaded_moving_image', args.outputdir, args.debug) | |
# TF stuff | |
LOGGER.info('Setting up configuration') | |
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0}) | |
config.gpu_options.allow_growth = True | |
config.log_device_placement = False ## to log device placement (on which device the operation ran) | |
config.allow_soft_placement = True | |
sess = tf.compat.v1.Session(config=config) | |
tf.compat.v1.keras.backend.set_session(sess) | |
# Preprocess data | |
# 1. Run Livermask to get the mask around the liver in both the fixed and moving image | |
LOGGER.info('Getting ROI') | |
fixed_segm_bbox = get_roi(args.fixed, args.make_segmentation, args.outputdir, | |
'fixed_segmentation', args.fixedsegm, args.debug) | |
moving_segm_bbox = get_roi(args.moving, args.make_segmentation, args.outputdir, | |
'moving_segmentation', args.movingsegm, args.debug) | |
crop_min = np.amin(np.vstack([fixed_segm_bbox[:3], moving_segm_bbox[:3]]), axis=0) | |
crop_max = np.amax(np.vstack([fixed_segm_bbox[3:], moving_segm_bbox[3:]]), axis=0) | |
# 2.2 Crop the fixed and moving images using such boxes | |
fixed_image = fixed_image_or[crop_min[0]: crop_max[0], | |
crop_min[1]: crop_max[1], | |
crop_min[2]: crop_max[2], ...] | |
debug_save_image(fixed_image, 'img_2_cropped_fixed_image', args.outputdir, args.debug) | |
moving_image = moving_image_or[crop_min[0]: crop_max[0], | |
crop_min[1]: crop_max[1], | |
crop_min[2]: crop_max[2], ...] | |
debug_save_image(moving_image, 'img_2_cropped_moving_image', args.outputdir, args.debug) | |
image_shape_crop = fixed_image.shape | |
# 2.3 Resize the images to the expected input size | |
zoom_factors = np.asarray(C.IMG_SHAPE) / np.asarray(image_shape_crop) | |
fixed_image = zoom(fixed_image, zoom_factors) | |
moving_image = zoom(moving_image, zoom_factors) | |
fixed_image = min_max_norm(fixed_image) | |
moving_image = min_max_norm(moving_image) | |
debug_save_image(fixed_image, 'img_3_preproc_fixed_image', args.outputdir, args.debug) | |
debug_save_image(moving_image, 'img_3_preproc_moving_image', args.outputdir, args.debug) | |
# 3. Build the whole graph | |
LOGGER.info('Building TF graph') | |
### METRICS GRAPH ### | |
fix_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='fix_img') | |
pred_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='pred_img') | |
ssim_tf = StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric(fix_img_ph, pred_img_ph) | |
ncc_tf = NCC(image_shape_or).metric(fix_img_ph, pred_img_ph) | |
mse_tf = vxm.losses.MSE().loss(fix_img_ph, pred_img_ph) | |
ms_ssim_tf = MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric(fix_img_ph, pred_img_ph) | |
LOGGER.info(f'Getting model: {"Brain" if args.anatomy == "B" else "Liver"} -> {args.model}') | |
MODEL_FILE = get_models_path(args.anatomy, args.model, os.getcwd()) # MODELS_FILE[args.anatomy][args.model] | |
network, registration_model = load_model(MODEL_FILE, False, True) | |
deb_model = network.apply_transform | |
LOGGER.info('Computing registration') | |
with sess.as_default(): | |
if args.debug: | |
registration_model.summary(line_length=C.SUMMARY_LINE_LENGTH) | |
LOGGER.info('Computing displacement map...') | |
time_disp_map_start = time.time() | |
# disp_map = registration_model.predict([moving_image[np.newaxis, ...], fixed_image[np.newaxis, ...]]) | |
p, disp_map = network.predict([moving_image[np.newaxis, ...], fixed_image[np.newaxis, ...]]) | |
time_disp_map_end = time.time() | |
LOGGER.info(f'\t... done ({time_disp_map_end - time_disp_map_start})') | |
disp_map = np.squeeze(disp_map) | |
debug_save_image(np.squeeze(disp_map), 'disp_map_0_raw', args.outputdir, args.debug) | |
debug_save_image(p[0, ...], 'img_4_net_pred_image', args.outputdir, args.debug) | |
# pred_image = min_max_norm(pred_image) | |
# pred_image_isot = zoom(pred_image[0, ...], zoom_factors, order=3)[np.newaxis, ...] | |
# fixed_image_isot = zoom(fixed_image[0, ...], zoom_factors, order=3)[np.newaxis, ...] | |
LOGGER.info('Applying displacement map...') | |
time_pred_img_start = time.time() | |
pred_image = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([moving_image[np.newaxis, ...], disp_map[np.newaxis, ...]]).eval() | |
time_pred_img_end = time.time() | |
LOGGER.info(f'\t... done ({time_pred_img_end - time_pred_img_start} s)') | |
pred_image = pred_image[0, ...] | |
if args.original_resolution: | |
LOGGER.info('Scaling predicted image...') | |
moving_image = moving_image_or | |
fixed_image = fixed_image_or | |
# disp_map = disp_map_or | |
pred_image = zoom(pred_image, 1/zoom_factors) | |
pred_image = pad_crop_to_original_shape(pred_image, fixed_image_or.shape, crop_min) | |
LOGGER.info('Done...') | |
LOGGER.info('Computing metrics...') | |
if args.original_resolution: | |
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf], | |
{'fix_img:0': fixed_image[np.newaxis, | |
crop_min[0]: crop_max[0], | |
crop_min[1]: crop_max[1], | |
crop_min[2]: crop_max[2], | |
...], | |
'pred_img:0': pred_image[np.newaxis, | |
crop_min[0]: crop_max[0], | |
crop_min[1]: crop_max[1], | |
crop_min[2]: crop_max[2], | |
...]}) # to only compare the deformed region! | |
else: | |
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf], | |
{'fix_img:0': fixed_image[np.newaxis, ...], | |
'pred_img:0': pred_image[np.newaxis, ...]}) | |
ssim = np.mean(ssim) | |
ms_ssim = ms_ssim[0] | |
if args.original_resolution: | |
save_nifti(pred_image, os.path.join(args.outputdir, 'pred_image.nii.gz'), header=moving_image_header) | |
else: | |
save_nifti(pred_image, os.path.join(args.outputdir, 'pred_image.nii.gz')) | |
save_nifti(fixed_image, os.path.join(args.outputdir, 'fixed_image.nii.gz')) | |
save_nifti(moving_image, os.path.join(args.outputdir, 'moving_image.nii.gz')) | |
if args.save_displacement_map or args.debug: | |
if args.original_resolution: | |
# Up sample the displacement map to the full res | |
LOGGER.info('Scaling displacement map...') | |
trf = np.eye(4) | |
np.fill_diagonal(trf, 1 / zoom_factors) | |
disp_map = resize_displacement_map(disp_map, None, trf, moving_image_header.get_zooms()) | |
debug_save_image(disp_map, 'disp_map_1_upsampled', args.outputdir, args.debug) | |
disp_map = pad_displacement_map(disp_map, crop_min, crop_max, image_shape_or) | |
debug_save_image(np.squeeze(disp_map), 'disp_map_2_padded', args.outputdir, args.debug) | |
disp_map = gaussian_filter(disp_map, 5) | |
debug_save_image(np.squeeze(disp_map), 'disp_map_3_smoothed', args.outputdir, args.debug) | |
LOGGER.info('\t... done') | |
if args.debug: | |
np.savez_compressed(os.path.join(args.outputdir, 'displacement_map.npz'), disp_map) | |
else: | |
np.savez_compressed(os.path.join(os.path.join(args.outputdir, 'debug'), 'displacement_map.npz'), disp_map) | |
LOGGER.info('Predicted image and displacement map saved in: '.format(args.outputdir)) | |
LOGGER.info(f'Displacement map prediction time: {time_disp_map_end - time_disp_map_start} s') | |
LOGGER.info(f'Predicted image time: {time_pred_img_end - time_pred_img_start} s') | |
LOGGER.info('Similarity metrics\n------------------') | |
LOGGER.info('SSIM: {:.03f}'.format(ssim)) | |
LOGGER.info('NCC: {:.03f}'.format(ncc)) | |
LOGGER.info('MSE: {:.03f}'.format(mse)) | |
LOGGER.info('MS SSIM: {:.03f}'.format(ms_ssim)) | |
# ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf], | |
# {'fix_img:0': fixed_image[np.newaxis, ...], 'pred_img:0': p}) | |
# ssim = np.mean(ssim) | |
# ms_ssim = ms_ssim[0] | |
# LOGGER.info('\nSimilarity metrics (ROI)\n------------------') | |
# LOGGER.info('SSIM: {:.03f}'.format(ssim)) | |
# LOGGER.info('NCC: {:.03f}'.format(ncc)) | |
# LOGGER.info('MSE: {:.03f}'.format(mse)) | |
# LOGGER.info('MS SSIM: {:.03f}'.format(ms_ssim)) | |
del registration_model | |
LOGGER.info('Done') | |
exit(0) | |
if __name__ == '__main__': | |
main() | |