DDMR / COMET /COMET_train.py
jpdefrutos's picture
Scripts for training on the COMET CT Dataset
476daa5
raw
history blame
24 kB
import os, sys
import keras
currentdir = os.path.dirname(os.path.realpath(__file__))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
from datetime import datetime
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping
from tensorflow.python.keras.utils import Progbar
from tensorflow.keras import Input
from tensorflow.keras.models import Model
from tensorflow.python.framework.errors import InvalidArgumentError
import DeepDeformationMapRegistration.utils.constants as C
from DeepDeformationMapRegistration.losses import StructuralSimilarity_simplified, NCC, GeneralizedDICEScore, HausdorffDistanceErosion
from DeepDeformationMapRegistration.ms_ssim_tf import MultiScaleStructuralSimilarity
from DeepDeformationMapRegistration.ms_ssim_tf import _MSSSIM_WEIGHTS
from DeepDeformationMapRegistration.utils.acummulated_optimizer import AdamAccumulated
from DeepDeformationMapRegistration.utils.misc import function_decorator
from DeepDeformationMapRegistration.layers import AugmentationLayer
from DeepDeformationMapRegistration.utils.nifti_utils import save_nifti
from Brain_study.data_generator import BatchGenerator
from Brain_study.utils import SummaryDictionary, named_logs
import COMET.augmentation_constants as COMET_C
import numpy as np
import tensorflow as tf
import voxelmorph as vxm
import h5py
import re
import itertools
def launch_train(dataset_folder, validation_folder, output_folder, model_file, gpu_num=0, lr=1e-4, rw=5e-3, simil='ssim',
segm='dice', max_epochs=C.EPOCHS, freeze_layers=None,
acc_gradients=1, batch_size=16):
# 0. Input checks
assert dataset_folder is not None and output_folder is not None and model_file is not None
assert '.h5' in model_file, 'The model must be an H5 file'
USE_SEGMENTATIONS = bool(re.search('SEGGUIDED', model_file))
# 1. Load variables
os.environ['CUDA_DEVICE_ORDER'] = C.DEV_ORDER
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_num) # Check availability before running using 'nvidia-smi'
C.GPU_NUM = str(gpu_num)
if freeze_layers is not None:
assert all(s in ['INPUT', 'OUTPUT', 'ENCODER', 'DECODER', 'TOP', 'BOTTOM'] for s in freeze_layers), \
'Invalid option for "freeze". Expected one or several of: INPUT, OUTPUT, ENCODER, DECODER, TOP, BOTTOM'
freeze_layers = [list(COMET_C.LAYER_RANGES[l]) for l in list(set(freeze_layers))]
if len(freeze_layers) > 1:
freeze_layers = list(itertools.chain.from_iterable(freeze_layers))
os.makedirs(output_folder, exist_ok=True)
# dataset_copy = DatasetCopy(dataset_folder, os.path.join(output_folder, 'temp'))
log_file = open(os.path.join(output_folder, 'log.txt'), 'w')
C.TRAINING_DATASET = dataset_folder #dataset_copy.copy_dataset()
C.VALIDATION_DATASET = validation_folder
C.ACCUM_GRADIENT_STEP = acc_gradients
C.BATCH_SIZE = batch_size if C.ACCUM_GRADIENT_STEP == 1 else C.ACCUM_GRADIENT_STEP
C.EARLY_STOP_PATIENCE = 5 * (C.ACCUM_GRADIENT_STEP / 2 if C.ACCUM_GRADIENT_STEP != 1 else 1)
C.LEARNING_RATE = lr
C.LIMIT_NUM_SAMPLES = None
C.EPOCHS = max_epochs
aux = "[{}]\tINFO:\nTRAIN DATASET: {}\nVALIDATION DATASET: {}\n" \
"GPU: {}\n" \
"BATCH SIZE: {}\n" \
"LR: {}\n" \
"SIMILARITY: {}\n" \
"SEGMENTATION: {}\n"\
"REG. WEIGHT: {}\n" \
"EPOCHS: {:d}\n" \
"ACCUM. GRAD: {}\n" \
"EARLY STOP PATIENCE: {}\n" \
"FROZEN LAYERS: {}".format(datetime.now().strftime('%H:%M:%S\t%d/%m/%Y'),
C.TRAINING_DATASET,
C.VALIDATION_DATASET,
C.GPU_NUM,
C.BATCH_SIZE,
C.LEARNING_RATE,
simil,
segm,
rw,
C.EPOCHS,
C.ACCUM_GRADIENT_STEP,
C.EARLY_STOP_PATIENCE,
freeze_layers)
log_file.write(aux)
print(aux)
# 2. Data generator
used_labels = 'all' if USE_SEGMENTATIONS else 'none'
data_generator = BatchGenerator(C.TRAINING_DATASET, C.BATCH_SIZE if C.ACCUM_GRADIENT_STEP == 1 else 1, True,
C.TRAINING_PERC, labels=[used_labels], combine_segmentations=not USE_SEGMENTATIONS,
directory_val=C.VALIDATION_DATASET)
train_generator = data_generator.get_train_generator()
validation_generator = data_generator.get_validation_generator()
image_input_shape = train_generator.get_data_shape()[-1][:-1]
image_output_shape = [64] * 3
nb_labels = len(train_generator.get_segmentation_labels())
# 3. Load model
# IMPORTANT: the mode MUST be loaded AFTER setting up the session configuration
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
config.gpu_options.allow_growth = True
config.log_device_placement = False ## to log device placement (on which device the operation ran)
sess = tf.Session(config=config)
tf.keras.backend.set_session(sess)
loss_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).loss,
NCC(image_input_shape).loss,
vxm.losses.MSE().loss,
MultiScaleStructuralSimilarity(max_val=1., filter_size=3).loss,
HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [nb_labels]).loss,
GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).loss,
GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).loss_macro
]
metric_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric,
NCC(image_input_shape).metric,
vxm.losses.MSE().loss,
MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric,
GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric,
HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [nb_labels]).metric,
GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric_macro,]
print('MODEL LOCATION: ', model_file)
try:
network = tf.keras.models.load_model(model_file, {#'VxmDenseSemiSupervisedSeg': vxm.networks.VxmDenseSemiSupervisedSeg,
'VxmDense': vxm.networks.VxmDense,
'AdamAccumulated': AdamAccumulated,
'loss': loss_fncs,
'metric': metric_fncs},
compile=False)
except ValueError as e:
enc_features = [16, 32, 32, 32] # const.ENCODER_FILTERS
dec_features = [32, 32, 32, 32, 32, 16, 16] # const.ENCODER_FILTERS[::-1]
nb_features = [enc_features, dec_features]
if USE_SEGMENTATIONS:
network = vxm.networks.VxmDenseSemiSupervisedSeg(inshape=image_output_shape,
nb_labels=nb_labels,
nb_unet_features=nb_features,
int_steps=0,
int_downsize=1,
seg_downsize=1)
else:
network = vxm.networks.VxmDense(inshape=image_output_shape,
nb_unet_features=nb_features,
int_steps=0)
network.load_weights(model_file, by_name=True)
# 4. Freeze/unfreeze model layers
# freeze_layers = range(0, len(network.layers) - 8) # Do not freeze the last layers after the UNet (8 last layers)
# for l in freeze_layers:
# network.layers[l].trainable = False
# msg = "[INF]: Frozen layers {} to {}".format(0, len(network.layers) - 8)
# print(msg)
# log_file.write("INF: Frozen layers {} to {}".format(0, len(network.layers) - 8))
if freeze_layers is not None:
aux = list()
for r in freeze_layers:
for l in range(*r):
network.layers[l].trainable = False
aux.append(l)
aux.sort()
msg = "[INF]: Frozen layers {}".format(', '.join([str(a) for a in aux]))
else:
msg = "[INF] None frozen layers"
print(msg)
log_file.write(msg)
# network.trainable = False # Freeze the base model
# # Create a new model on top
# input_new_model = keras.Input(network.input_shape)
# x = base_model(input_new_model, training=False)
# x =
# network = keras.Model(input_new_model, x)
network.summary()
network.summary(print_fn=log_file.writelines)
# Complete the model with the augmentation layer
augm_train_input_shape = train_generator.get_data_shape()[0] if USE_SEGMENTATIONS else train_generator.get_data_shape()[-1]
input_layer_train = Input(shape=augm_train_input_shape, name='input_train')
augm_layer_train = AugmentationLayer(max_displacement=COMET_C.MAX_AUG_DISP, # Max 30 mm in isotropic space
max_deformation=COMET_C.MAX_AUG_DEF, # Max 6 mm in isotropic space
max_rotation=COMET_C.MAX_AUG_ANGLE, # Max 10 deg in isotropic space
num_control_points=COMET_C.NUM_CONTROL_PTS_AUG,
num_augmentations=COMET_C.NUM_AUGMENTATIONS,
gamma_augmentation=COMET_C.GAMMA_AUGMENTATION,
brightness_augmentation=COMET_C.BRIGHTNESS_AUGMENTATION,
in_img_shape=image_input_shape,
out_img_shape=image_output_shape,
only_image=not USE_SEGMENTATIONS, # If baseline then True
only_resize=False,
trainable=False)
augm_model_train = Model(inputs=input_layer_train, outputs=augm_layer_train(input_layer_train))
input_layer_valid = Input(shape=validation_generator.get_data_shape()[0], name='input_valid')
augm_layer_valid = AugmentationLayer(max_displacement=COMET_C.MAX_AUG_DISP, # Max 30 mm in isotropic space
max_deformation=COMET_C.MAX_AUG_DEF, # Max 6 mm in isotropic space
max_rotation=COMET_C.MAX_AUG_ANGLE, # Max 10 deg in isotropic space
num_control_points=COMET_C.NUM_CONTROL_PTS_AUG,
num_augmentations=COMET_C.NUM_AUGMENTATIONS,
gamma_augmentation=COMET_C.GAMMA_AUGMENTATION,
brightness_augmentation=COMET_C.BRIGHTNESS_AUGMENTATION,
in_img_shape=image_input_shape,
out_img_shape=image_output_shape,
only_image=False,
only_resize=False,
trainable=False)
augm_model_valid = Model(inputs=input_layer_valid, outputs=augm_layer_valid(input_layer_valid))
# 5. Setup training environment: loss, optimizer, callbacks, evaluation
# Losses and loss weights
SSIM_KER_SIZE = 5
MS_SSIM_WEIGHTS = _MSSSIM_WEIGHTS[:3]
MS_SSIM_WEIGHTS /= np.sum(MS_SSIM_WEIGHTS)
if simil.lower() == 'mse':
loss_fnc = vxm.losses.MSE().loss
elif simil.lower() == 'ncc':
loss_fnc = NCC(image_input_shape).loss
elif simil.lower() == 'ssim':
loss_fnc = StructuralSimilarity_simplified(patch_size=SSIM_KER_SIZE, dim=3, dynamic_range=1.).loss
elif simil.lower() == 'ms_ssim':
loss_fnc = MultiScaleStructuralSimilarity(max_val=1., filter_size=SSIM_KER_SIZE, power_factors=MS_SSIM_WEIGHTS).loss
elif simil.lower() == 'mse__ms_ssim' or simil.lower() == 'ms_ssim__mse':
@function_decorator('MSSSIM_MSE__loss')
def loss_fnc(y_true, y_pred):
return vxm.losses.MSE().loss(y_true, y_pred) + \
MultiScaleStructuralSimilarity(max_val=1., filter_size=SSIM_KER_SIZE, power_factors=MS_SSIM_WEIGHTS).loss(y_true, y_pred)
elif simil.lower() == 'ncc__ms_ssim' or simil.lower() == 'ms_ssim__ncc':
@function_decorator('MSSSIM_NCC__loss')
def loss_fnc(y_true, y_pred):
return NCC(image_input_shape).loss(y_true, y_pred) + \
MultiScaleStructuralSimilarity(max_val=1., filter_size=SSIM_KER_SIZE, power_factors=MS_SSIM_WEIGHTS).loss(y_true, y_pred)
elif simil.lower() == 'mse__ssim' or simil.lower() == 'ssim__mse':
@function_decorator('SSIM_MSE__loss')
def loss_fnc(y_true, y_pred):
return vxm.losses.MSE().loss(y_true, y_pred) + \
StructuralSimilarity_simplified(patch_size=SSIM_KER_SIZE, dim=3, dynamic_range=1.).loss(y_true, y_pred)
elif simil.lower() == 'ncc__ssim' or simil.lower() == 'ssim__ncc':
@function_decorator('SSIM_NCC__loss')
def loss_fnc(y_true, y_pred):
return NCC(image_input_shape).loss(y_true, y_pred) + \
StructuralSimilarity_simplified(patch_size=SSIM_KER_SIZE, dim=3, dynamic_range=1.).loss(y_true, y_pred)
else:
raise ValueError('Unknown similarity metric: ' + simil)
if USE_SEGMENTATIONS:
if segm == 'hd':
loss_segm = HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [nb_labels]).loss
elif segm == 'dice':
loss_segm = GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).loss
elif segm == 'dice_macro':
loss_segm = GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).loss_macro
else:
raise ValueError('No valid value for segm')
os.makedirs(os.path.join(output_folder, 'checkpoints'), exist_ok=True)
os.makedirs(os.path.join(output_folder, 'tensorboard'), exist_ok=True)
callback_tensorboard = TensorBoard(log_dir=os.path.join(output_folder, 'tensorboard'),
batch_size=C.BATCH_SIZE, write_images=False, histogram_freq=0,
update_freq='epoch', # or 'batch' or integer
write_graph=True, write_grads=True
)
callback_early_stop = EarlyStopping(monitor='val_loss', verbose=1, patience=C.EARLY_STOP_PATIENCE, min_delta=0.00001)
callback_best_model = ModelCheckpoint(os.path.join(output_folder, 'checkpoints', 'best_model.h5'),
save_best_only=True, monitor='val_loss', verbose=1, mode='min')
callback_save_checkpoint = ModelCheckpoint(os.path.join(output_folder, 'checkpoints', 'checkpoint.h5'),
save_weights_only=True, monitor='val_loss', verbose=0, mode='min')
if USE_SEGMENTATIONS:
losses = {'transformer': loss_fnc,
'seg_transformer': loss_segm,
'flow': vxm.losses.Grad('l2').loss}
metrics = {'transformer': [StructuralSimilarity_simplified(patch_size=SSIM_KER_SIZE, dim=3, dynamic_range=1.).metric,
MultiScaleStructuralSimilarity(max_val=1., filter_size=SSIM_KER_SIZE, power_factors=MS_SSIM_WEIGHTS).metric,
tf.keras.losses.MSE,
NCC(image_input_shape).metric],
'seg_transformer': [GeneralizedDICEScore(image_output_shape + [train_generator.get_data_shape()[2][-1]], num_labels=nb_labels).metric,
HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [train_generator.get_data_shape()[2][-1]]).metric,
GeneralizedDICEScore(image_output_shape + [train_generator.get_data_shape()[2][-1]], num_labels=nb_labels).metric_macro,
],
#'flow': vxm.losses.Grad('l2').loss
}
loss_weights = {'transformer': 1.,
'seg_transformer': 1.,
'flow': rw}
else:
losses = {'transformer': loss_fnc,
'flow': vxm.losses.Grad('l2').loss}
metrics = {'transformer': [StructuralSimilarity_simplified(patch_size=SSIM_KER_SIZE, dim=3, dynamic_range=1.).metric,
MultiScaleStructuralSimilarity(max_val=1., filter_size=SSIM_KER_SIZE, power_factors=MS_SSIM_WEIGHTS).metric,
tf.keras.losses.MSE,
NCC(image_input_shape).metric],
#'flow': vxm.losses.Grad('l2').loss
}
loss_weights = {'transformer': 1.,
'flow': rw}
optimizer = AdamAccumulated(C.ACCUM_GRADIENT_STEP, C.LEARNING_RATE)
network.compile(optimizer=optimizer,
loss=losses,
loss_weights=loss_weights,
metrics=metrics)
# 6. Training loop
callback_tensorboard.set_model(network)
callback_early_stop.set_model(network)
callback_best_model.set_model(network)
callback_save_checkpoint.set_model(network)
summary = SummaryDictionary(network, C.BATCH_SIZE)
names = network.metrics_names
log_file.write('\n\n[{}]\tINFO:\tStart training\n\n'.format(datetime.now().strftime('%H:%M:%S\t%d/%m/%Y')))
with sess.as_default():
# tf.global_variables_initializer()
callback_tensorboard.on_train_begin()
callback_early_stop.on_train_begin()
callback_best_model.on_train_begin()
callback_save_checkpoint.on_train_begin()
for epoch in range(C.EPOCHS):
callback_tensorboard.on_epoch_begin(epoch)
callback_early_stop.on_epoch_begin(epoch)
callback_best_model.on_epoch_begin(epoch)
callback_save_checkpoint.on_epoch_begin(epoch)
print("\nEpoch {}/{}".format(epoch, C.EPOCHS))
print("TRAIN")
log_file.write('\n\n[{}]\tINFO:\tTraining epoch {}\n\n'.format(datetime.now().strftime('%H:%M:%S\t%d/%m/%Y'), epoch))
progress_bar = Progbar(len(train_generator), width=30, verbose=1)
for step, (in_batch, _) in enumerate(train_generator, 1):
callback_best_model.on_train_batch_begin(step)
callback_save_checkpoint.on_train_batch_begin(step)
callback_early_stop.on_train_batch_begin(step)
try:
fix_img, mov_img, fix_seg, mov_seg = augm_model_train.predict(in_batch)
np.nan_to_num(fix_img, copy=False)
np.nan_to_num(mov_img, copy=False)
if np.isnan(np.sum(mov_img)) or np.isnan(np.sum(fix_img)) or np.isinf(np.sum(mov_img)) or np.isinf(np.sum(fix_img)):
msg = 'CORRUPTED DATA!! Unique: Fix: {}\tMoving: {}'.format(np.unique(fix_img),
np.unique(mov_img))
print(msg)
log_file.write('\n\n[{}]\tWAR: {}'.format(datetime.now().strftime('%H:%M:%S\t%d/%m/%Y'), msg))
except InvalidArgumentError as err:
print('TF Error : {}'.format(str(err)))
continue
if USE_SEGMENTATIONS:
in_data = (mov_img, fix_img, mov_seg)
out_data = (fix_img, fix_img, fix_seg)
else:
in_data = (mov_img, fix_img)
out_data = (fix_img, fix_img)
ret = network.train_on_batch(x=in_data, y=out_data) # The second element doesn't matter
if np.isnan(ret).any():
os.makedirs(os.path.join(output_folder, 'corrupted'), exist_ok=True)
save_nifti(mov_img, os.path.join(output_folder, 'corrupted', 'mov_img_nan.nii.gz'))
save_nifti(fix_img, os.path.join(output_folder, 'corrupted', 'fix_img_nan.nii.gz'))
pred_img, dm = network((mov_img, fix_img))
save_nifti(pred_img, os.path.join(output_folder, 'corrupted', 'pred_img_nan.nii.gz'))
save_nifti(dm, os.path.join(output_folder, 'corrupted', 'dm_nan.nii.gz'))
log_file.write('\n\n[{}]\tERR: Corruption error'.format(datetime.now().strftime('%H:%M:%S\t%d/%m/%Y')))
raise ValueError('CORRUPTION ERROR: Halting training')
summary.on_train_batch_end(ret)
callback_best_model.on_train_batch_end(step, named_logs(network, ret))
callback_save_checkpoint.on_train_batch_end(step, named_logs(network, ret))
callback_early_stop.on_train_batch_end(step, named_logs(network, ret))
progress_bar.update(step, zip(names, ret))
log_file.write('\t\tStep {:03d}: {}'.format(step, ret))
val_values = progress_bar._values.copy()
ret = [val_values[x][0]/val_values[x][1] for x in names]
print('\nVALIDATION')
log_file.write('\n\n[{}]\tINFO:\tValidation epoch {}\n\n'.format(datetime.now().strftime('%H:%M:%S\t%d/%m/%Y'), epoch))
progress_bar = Progbar(len(validation_generator), width=30, verbose=1)
for step, (in_batch, _) in enumerate(validation_generator, 1):
try:
fix_img, mov_img, fix_seg, mov_seg = augm_model_valid.predict(in_batch)
except InvalidArgumentError as err:
print('TF Error : {}'.format(str(err)))
continue
if USE_SEGMENTATIONS:
in_data = (mov_img, fix_img, mov_seg)
out_data = (fix_img, fix_img, fix_seg)
else:
in_data = (mov_img, fix_img)
out_data = (fix_img, fix_img)
ret = network.test_on_batch(x=in_data,
y=out_data)
summary.on_validation_batch_end(ret)
progress_bar.update(step, zip(names, ret))
log_file.write('\t\tStep {:03d}: {}'.format(step, ret))
val_values = progress_bar._values.copy()
ret = [val_values[x][0]/val_values[x][1] for x in names]
train_generator.on_epoch_end()
validation_generator.on_epoch_end()
epoch_summary = summary.on_epoch_end() # summary resets after on_epoch_end() call
callback_tensorboard.on_epoch_end(epoch, epoch_summary)
callback_best_model.on_epoch_end(epoch, epoch_summary)
callback_save_checkpoint.on_epoch_end(epoch, epoch_summary)
callback_early_stop.on_epoch_end(epoch, epoch_summary)
print('End of epoch {}: '.format(epoch), ret, '\n')
callback_tensorboard.on_train_end()
callback_best_model.on_train_end()
callback_save_checkpoint.on_train_end()
callback_early_stop.on_train_end()
# 7. Wrap up