|
import os |
|
import argparse |
|
import re |
|
import warnings |
|
|
|
import nibabel as nib |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
from matplotlib import cm |
|
from matplotlib.colors import ListedColormap, LinearSegmentedColormap, to_rgba, CSS4_COLORS |
|
import tikzplotlib |
|
|
|
from ddmr.utils.misc import segmentation_ohe_to_cardinal |
|
|
|
|
|
|
|
|
|
segm_cm = cm.get_cmap('jet').reversed() |
|
segm_cm = segm_cm(np.linspace(0, 1, 30)) |
|
segm_cm[0, :] = np.asarray([0, 0, 0, 0]) |
|
segm_cm = ListedColormap(segm_cm) |
|
|
|
DICT_MODEL_NAMES = {'BASELINE': 'BL', |
|
'SEGGUIDED': 'SG', |
|
'UW': 'UW'} |
|
|
|
DICT_METRICS_NAMES = {'NCC': 'N', |
|
'SSIM': 'S', |
|
'DICE': 'D', |
|
'DICE_MACRO': 'D', |
|
'HD': 'H', } |
|
|
|
|
|
def get_model_name(in_path: str): |
|
model = re.search('((UW|SEGGUIDED|BASELINE).*)_\d+-\d+', in_path) |
|
if model: |
|
model = model.group(1).rstrip('_') |
|
model = model.replace('_Lsim', '') |
|
model = model.replace('_Lseg', '') |
|
model = model.replace('_L', '') |
|
model = model.replace('_', ' ') |
|
model = model.upper() |
|
elements = model.split() |
|
model = elements[0] |
|
metrics = list() |
|
model = DICT_MODEL_NAMES[model] |
|
for m in elements[1:]: |
|
if m != 'MACRO': |
|
metrics.append(DICT_METRICS_NAMES[m]) |
|
|
|
return '{}-{}'.format(model, ''.join(metrics)) |
|
else: |
|
try: |
|
model = re.search('(SyNCC|SyN)', in_path).group(1) |
|
except AttributeError: |
|
raise ValueError('Unknown folder name/model: '+ in_path) |
|
return model |
|
|
|
|
|
def load_segmentation(file_path) -> np.ndarray: |
|
segm = np.asarray(nib.load(file_path).dataobj) |
|
if segm.shape[-1] > 1: |
|
segm = segmentation_ohe_to_cardinal(segm) |
|
return segm |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument('-d', '--dir', type=str, help='Directories where the models are stored', default=None) |
|
parser.add_argument('-o', '--output', type=str, help='Output directory', default=os.getcwd()) |
|
parser.add_argument('--overwrite', type=bool, default=True) |
|
parser.add_argument('--fileno', type=int, default=2) |
|
parser.add_argument('--tikz', type=bool, default=False) |
|
args = parser.parse_args() |
|
assert args.dir is not None, "No directories provided. Stopping" |
|
os.makedirs(args.output, exist_ok=True) |
|
list_fix_img = list() |
|
list_mov_img = list() |
|
list_fix_seg = list() |
|
list_mov_seg = list() |
|
list_pred_img = list() |
|
list_pred_seg = list() |
|
print('Fetching data...') |
|
init_lvl = args.dir.count(os.sep) |
|
for r, d, f in os.walk(args.dir): |
|
current_lvl = r.count(os.sep) - init_lvl |
|
if current_lvl < 3: |
|
for name in f: |
|
if re.search('^{:03d}'.format(args.fileno), name) and name.endswith('nii.gz'): |
|
if re.search('fix_img', name) and name.endswith('nii.gz'): |
|
list_fix_img.append(os.path.join(r, name)) |
|
elif re.search('mov_img', name): |
|
list_mov_img.append(os.path.join(r, name)) |
|
elif re.search('fix_seg', name): |
|
list_fix_seg.append(os.path.join(r, name)) |
|
elif re.search('mov_seg', name): |
|
list_mov_seg.append(os.path.join(r, name)) |
|
elif re.search('pred_img', name): |
|
list_pred_img.append(os.path.join(r, name)) |
|
elif re.search('pred_seg', name): |
|
list_pred_seg.append(os.path.join(r, name)) |
|
|
|
|
|
|
|
|
|
|
|
list_fix_img.sort() |
|
list_fix_seg.sort() |
|
list_mov_img.sort() |
|
list_mov_seg.sort() |
|
list_pred_img.sort() |
|
list_pred_seg.sort() |
|
print('Making Test_data.png...') |
|
selected_slice = 64 |
|
fix_img = np.asarray(nib.load(list_fix_img[0]).dataobj)[selected_slice, ..., 0].T |
|
mov_img = np.asarray(nib.load(list_mov_img[0]).dataobj)[selected_slice, ..., 0].T |
|
fix_seg = load_segmentation(list_fix_seg[0])[selected_slice, ..., 0].T |
|
mov_seg = load_segmentation(list_mov_seg[0])[selected_slice, ..., 0].T |
|
|
|
fig, ax = plt.subplots(nrows=1, ncols=4, figsize=(9, 3), dpi=200) |
|
|
|
for i, (img, title) in enumerate(zip([(fix_img, fix_seg), (mov_img, mov_seg)], |
|
[('Fixed image', 'Fixed segms.'), ('Moving image', 'Moving segms.')])): |
|
|
|
ax[i].imshow(img[0], origin='lower', cmap='Greys_r') |
|
ax[i+2].imshow(img[0], origin='lower', cmap='Greys_r') |
|
ax[i+2].imshow(img[1], origin='lower', cmap=segm_cm, alpha=0.6) |
|
|
|
ax[i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False) |
|
ax[i+2].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False) |
|
|
|
ax[i].set_xlabel(title[0], fontsize=16) |
|
ax[i+2].set_xlabel(title[1], fontsize=16) |
|
|
|
plt.tight_layout() |
|
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Test_data.png')): |
|
warnings.warn('File Test_data.png already exists. Skipping') |
|
else: |
|
plt.savefig(os.path.join(args.output, 'Test_data.png'), format='png') |
|
if args.tikz: |
|
tikzplotlib.save(os.path.join(args.output, 'Test_data.tex')) |
|
plt.close() |
|
|
|
print('Making Pred_data.png...') |
|
fig, ax = plt.subplots(nrows=2, ncols=len(list_pred_img), figsize=(9, 3), dpi=200) |
|
|
|
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)): |
|
img = np.asarray(nib.load(pred_img_path).dataobj)[selected_slice, ..., 0].T |
|
seg = load_segmentation(pred_seg_path)[selected_slice, ..., 0].T |
|
|
|
ax[0, i].imshow(img, origin='lower', cmap='Greys_r') |
|
ax[1, i].imshow(img, origin='lower', cmap='Greys_r') |
|
ax[1, i].imshow(seg, origin='lower', cmap=segm_cm, alpha=0.6) |
|
|
|
ax[0, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False) |
|
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False) |
|
|
|
model = get_model_name(pred_img_path) |
|
|
|
ax[1, i].set_xlabel(model, fontsize=9) |
|
plt.tight_layout() |
|
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Pred_data.png')): |
|
warnings.warn('File Pred_data.png already exists. Skipping') |
|
else: |
|
plt.savefig(os.path.join(args.output, 'Pred_data.png'), format='png') |
|
if args.tikz: |
|
tikzplotlib.save(os.path.join(args.output, 'Pred_data.tex')) |
|
plt.close() |
|
|
|
print('Making Pred_data_large.png...') |
|
fig, ax = plt.subplots(nrows=2, ncols=len(list_pred_img) + 2, figsize=(9, 3), dpi=200) |
|
list_pred_img = [list_mov_img[0]] + list_pred_img |
|
list_pred_img = [list_fix_img[0]] + list_pred_img |
|
list_pred_seg = [list_mov_seg[0]] + list_pred_seg |
|
list_pred_seg = [list_fix_seg[0]] + list_pred_seg |
|
|
|
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)): |
|
img = np.asarray(nib.load(pred_img_path).dataobj)[selected_slice, ..., 0].T |
|
seg = load_segmentation(pred_seg_path)[selected_slice, ..., 0].T |
|
|
|
ax[0, i].imshow(img, origin='lower', cmap='Greys_r') |
|
ax[1, i].imshow(img, origin='lower', cmap='Greys_r') |
|
ax[1, i].imshow(seg, origin='lower', cmap=segm_cm, alpha=0.6) |
|
|
|
ax[0, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False) |
|
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False) |
|
|
|
if i > 1: |
|
model = get_model_name(pred_img_path) |
|
elif i == 0: |
|
model = 'Moving image' |
|
else: |
|
model = 'Fixed image' |
|
|
|
ax[1, i].set_xlabel(model, fontsize=7) |
|
plt.tight_layout() |
|
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Pred_data_large.png')): |
|
warnings.warn('File Pred_data.png already exists. Skipping') |
|
else: |
|
plt.savefig(os.path.join(args.output, 'Pred_data_large.png'), format='png') |
|
if args.tikz: |
|
tikzplotlib.save(os.path.join(args.output, 'Pred_data_large.png')) |
|
plt.close() |
|
|
|
print('...done!') |
|
|