|
import h5py |
|
import nibabel as nib |
|
from nilearn.image import resample_img |
|
import os, sys |
|
import re |
|
import numpy as np |
|
from scipy.ndimage import zoom |
|
from tqdm import tqdm |
|
|
|
currentdir = os.path.dirname(os.path.realpath(__file__)) |
|
parentdir = os.path.dirname(currentdir) |
|
sys.path.append(parentdir) |
|
|
|
from Brain_study.split_dataset import split |
|
|
|
SEGMENTATION_NR2LBL_LUT = {0: 'background', |
|
2: 'parietal-right-gm', |
|
3: 'lateral-ventricle-left', |
|
4: 'occipital-right-gm', |
|
6: 'parietal-left-gm', |
|
8: 'occipital-left-gm', |
|
9: 'lateral-ventricle-right', |
|
11: 'globus-pallidus-right', |
|
12: 'globus-pallidus-left', |
|
14: 'putamen-left', |
|
16: 'putamen-right', |
|
20: 'brain-stem', |
|
23: 'subthalamic-nucleus-right', |
|
29: 'fornix-left', |
|
33: 'subthalamic-nucleus-left', |
|
39: 'caudate-left', |
|
53: 'caudate-right', |
|
67: 'cerebellum-left', |
|
76: 'cerebellum-right', |
|
102: 'thalamus-left', |
|
203: 'thalamus-right', |
|
210: 'frontal-left-gm', |
|
211: 'frontal-right-gm', |
|
218: 'temporal-left-gm', |
|
219: 'temporal-right-gm', |
|
232: '3rd-ventricle', |
|
233: '4th-ventricle', |
|
254: 'fornix-right', |
|
255: 'csf'} |
|
|
|
SEGMENTATION_LBL2NR_LUT = {v: k for k, v in SEGMENTATION_NR2LBL_LUT.items()} |
|
|
|
ALL_LABELS = {2., 3., 4., 6., 8., 9., 11., 12., 14., 16., 20., 23., 29., 33., 39., 53., 67., 76., 102., 203., 210., |
|
211., 218., 219., 232., 233., 254., 255.} |
|
LABELS_COMBINED = {0, (2, 6), (3, 9), (4, 8), (11, 12), (14, 16), 20, (23, 33), (29, 254), (39, 53), (67, 76), (102, 203), (210, 211), (218, 219), 232, 233, 255} |
|
SEGMENTATION_LOC = {} |
|
for loc, label in enumerate(LABELS_COMBINED): |
|
if isinstance(label, tuple): |
|
SEGMENTATION_LOC.update(dict.fromkeys(label, loc)) |
|
else: |
|
SEGMENTATION_LOC[label] = loc |
|
|
|
IMG_DIRECTORY = '/mnt/EncryptedData1/Users/javier/ext_datasets/IXI_dataset/T1' |
|
SEG_DIRECTORY = '/mnt/EncryptedData1/Users/javier/ext_datasets/IXI_dataset/T1/anatomical_masks' |
|
|
|
IMG_NAME_PATTERN = '(.*).nii.gz' |
|
SEG_NAME_PATTERN = '(.*)_lobes.nii.gz' |
|
|
|
OUT_DIRECTORY = '/mnt/EncryptedData1/Users/javier/ext_datasets/IXI_dataset/T1/ERASEME_sequential' |
|
|
|
if __name__ == '__main__': |
|
img_list = [os.path.join(IMG_DIRECTORY, f) for f in os.listdir(IMG_DIRECTORY) if f.endswith('.nii.gz')] |
|
img_list.sort() |
|
|
|
seg_list = [os.path.join(SEG_DIRECTORY, f) for f in os.listdir(SEG_DIRECTORY) if f.endswith('.nii.gz')] |
|
seg_list.sort() |
|
|
|
os.makedirs(OUT_DIRECTORY, exist_ok=True) |
|
|
|
vectorize_fnc = np.vectorize(lambda x: SEGMENTATION_LOC[x] if x in SEGMENTATION_LOC.keys() else 0) |
|
change_labels = lambda x: np.reshape(vectorize_fnc(x.ravel()), x.shape) |
|
for seg_file in tqdm(seg_list): |
|
img_name = re.match(SEG_NAME_PATTERN, os.path.split(seg_file)[-1])[1] |
|
img_file = os.path.join(IMG_DIRECTORY, img_name + '.nii.gz') |
|
|
|
img = resample_img(nib.load(img_file), np.eye(3)) |
|
seg = resample_img(nib.load(seg_file), np.eye(3), interpolation='nearest') |
|
|
|
isot_shape = img.shape |
|
|
|
|
|
img = np.asarray(img.dataobj) |
|
img = zoom(img, np.asarray([128]*3) / np.asarray(isot_shape), order=3) |
|
|
|
seg = np.asarray(seg.dataobj) |
|
seg = zoom(seg, np.asarray([128]*3) / np.asarray(isot_shape), order=0) |
|
|
|
seg = change_labels(seg) |
|
|
|
unique_lbls = np.unique(seg)[1:] |
|
seg_expanded = np.tile(np.zeros_like(seg)[..., np.newaxis], (1, 1, 1, len(unique_lbls))) |
|
for ch, lbl in enumerate(unique_lbls): |
|
seg_expanded[seg == lbl, ch] = 1 |
|
|
|
h5_file = h5py.File(os.path.join(OUT_DIRECTORY, img_name + '.h5'), 'w') |
|
|
|
h5_file.create_dataset('image', data=img[..., np.newaxis], dtype=np.float32) |
|
h5_file.create_dataset('segmentation', data=seg[..., np.newaxis].astype(np.uint8), dtype=np.uint8) |
|
|
|
h5_file.create_dataset('segmentation_labels', data=unique_lbls) |
|
h5_file.create_dataset('isotropic_shape', data=isot_shape) |
|
|
|
h5_file.close() |
|
|
|
split(train_perc=0.70, validation_perc=0.15, test_perc=0.15, data_dir=OUT_DIRECTORY, move_files=True) |
|
|
|
|
|
|
|
|
|
|