|
import h5py |
|
import ants |
|
import numpy as np |
|
import nibabel as nb |
|
import os, sys |
|
from tqdm import tqdm |
|
import re |
|
import time |
|
import pandas as pd |
|
|
|
currentdir = os.path.dirname(os.path.realpath(__file__)) |
|
parentdir = os.path.dirname(currentdir) |
|
sys.path.append(parentdir) |
|
|
|
from ddmr.losses import StructuralSimilarity_simplified, NCC, GeneralizedDICEScore, HausdorffDistanceErosion, target_registration_error |
|
from ddmr.ms_ssim_tf import MultiScaleStructuralSimilarity |
|
from ddmr.utils.misc import DisplacementMapInterpolator, segmentation_ohe_to_cardinal |
|
from ddmr.utils.nifti_utils import save_nifti |
|
from ddmr.utils.visualization import save_disp_map_img, plot_predictions |
|
import ddmr.utils.constants as C |
|
import shutil |
|
import medpy.metric as medpy_metrics |
|
|
|
import voxelmorph as vxm |
|
|
|
from argparse import ArgumentParser |
|
|
|
import tensorflow as tf |
|
|
|
DATASET_LOCATION = '/mnt/EncryptedData1/Users/javier/vessel_registration/3Dirca/dataset/EVAL' |
|
DATASET_NAMES = 'test_sample_\d{4}.h5' |
|
DATASET_FILENAME = 'volume' |
|
IMGS_FOLDER = '/home/jpdefrutos/workspace/ddmr/Centerline/imgs' |
|
|
|
WARPED_MOV = 'warpedmovout' |
|
WARPED_FIX = 'warpedfixout' |
|
FWD_TRFS = 'fwdtransforms' |
|
INV_TRFS = 'invtransforms' |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = ArgumentParser() |
|
parser.add_argument('--dataset', type=str, help='Directory with the images') |
|
parser.add_argument('--outdirname', type=str, help='Output directory') |
|
parser.add_argument('--gpu', type=int, help='GPU') |
|
parser.add_argument('--savenifti', type=bool, default=True) |
|
parser.add_argument('--erase', type=bool, help='Erase the content of the output folder', default=False) |
|
args = parser.parse_args() |
|
|
|
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' |
|
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) |
|
if args.erase: |
|
shutil.rmtree(args.outdirname, ignore_errors=True) |
|
os.makedirs(args.outdirname, exist_ok=True) |
|
os.makedirs(os.path.join(args.outdirname, 'SyN'), exist_ok=True) |
|
os.makedirs(os.path.join(args.outdirname, 'SyNCC'), exist_ok=True) |
|
dataset_files = os.listdir(args.dataset) |
|
dataset_files.sort() |
|
dataset_files = [os.path.join(args.dataset, f) for f in dataset_files if re.match(DATASET_NAMES, f)] |
|
dataset_files.sort() |
|
dataset_iterator = tqdm(enumerate(dataset_files), desc="Running ANTs") |
|
|
|
f = h5py.File(dataset_files[0], 'r') |
|
image_shape = list(f['fix_image'][:].shape[:-1]) |
|
nb_labels = f['fix_segmentations'][:].shape[-1] - 1 |
|
f.close() |
|
|
|
|
|
metric_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric, |
|
NCC(image_shape).metric, |
|
vxm.losses.MSE().loss, |
|
MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric, |
|
GeneralizedDICEScore(image_shape + [nb_labels], num_labels=nb_labels).metric, |
|
HausdorffDistanceErosion(3, 10, im_shape=image_shape + [nb_labels]).metric, |
|
GeneralizedDICEScore(image_shape + [nb_labels], num_labels=nb_labels).metric_macro] |
|
|
|
fix_img_ph = tf.placeholder(tf.float32, (1, None, None, None, 1), name='fix_img') |
|
pred_img_ph = tf.placeholder(tf.float32, (1, None, None, None, 1), name='pred_img') |
|
fix_seg_ph = tf.placeholder(tf.float32, (1, None, None, None, nb_labels), name='fix_seg') |
|
pred_seg_ph = tf.placeholder(tf.float32, (1, None, None, None, nb_labels), name='pred_seg') |
|
|
|
ssim_tf = metric_fncs[0](fix_img_ph, pred_img_ph) |
|
ncc_tf = metric_fncs[1](fix_img_ph, pred_img_ph) |
|
mse_tf = metric_fncs[2](fix_img_ph, pred_img_ph) |
|
ms_ssim_tf = metric_fncs[3](fix_img_ph, pred_img_ph) |
|
|
|
|
|
|
|
|
|
config = tf.compat.v1.ConfigProto() |
|
config.gpu_options.allow_growth = True |
|
config.log_device_placement = False |
|
config.allow_soft_placement = True |
|
|
|
sess = tf.Session(config=config) |
|
tf.keras.backend.set_session(sess) |
|
|
|
os.environ["ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"] = "{:d}".format(os.cpu_count()) |
|
print("Running ANTs using {} threads".format(os.environ.get("ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS"))) |
|
|
|
|
|
csv_header = ['File', 'SSIM', 'MS-SSIM', 'NCC', 'MSE', 'DICE', 'DICE_MACRO', 'HD', 'HD95', 'Time', 'TRE'] |
|
|
|
metrics_file = {'SyN': os.path.join(args.outdirname, 'SyN', 'metrics.csv'), |
|
'SyNCC': os.path.join(args.outdirname, 'SyNCC', 'metrics.csv')} |
|
for k in metrics_file.keys(): |
|
with open(metrics_file[k], 'w') as f: |
|
f.write(';'.join(csv_header)+'\n') |
|
|
|
print('Starting the loop') |
|
for step, file_path in dataset_iterator: |
|
file_num = int(re.findall('(\d+)', os.path.split(file_path)[-1])[0]) |
|
|
|
dataset_iterator.set_description('{} ({}): loading data'.format(file_num, file_path)) |
|
with h5py.File(file_path, 'r') as vol_file: |
|
fix_img = vol_file['fix_image'][:] |
|
mov_img = vol_file['mov_image'][:] |
|
|
|
fix_seg = vol_file['fix_segmentations'][..., 1:].astype(np.float32) |
|
mov_seg = vol_file['mov_segmentations'][..., 1:].astype(np.float32) |
|
|
|
fix_centroids = vol_file['fix_centroids'][1:, ...] |
|
mov_centroids = vol_file['mov_centroids'][1:, ...] |
|
|
|
isotropic_shape = vol_file['isotropic_shape'][:] |
|
voxel_size = np.divide(fix_img.shape[:-1], isotropic_shape) |
|
|
|
|
|
fix_img_ants = ants.make_image(fix_img.shape[:-1], np.squeeze(fix_img)) |
|
mov_img_ants = ants.make_image(mov_img.shape[:-1], np.squeeze(mov_img)) |
|
|
|
dataset_iterator.set_description('{} ({}): running ANTs SyN'.format(file_num, file_path)) |
|
t0_syn = time.time() |
|
reg_output_syn = ants.registration(fix_img_ants, mov_img_ants, 'SyN') |
|
t1_syn = time.time() |
|
|
|
dataset_iterator.set_description('{} ({}): running ANTs SyN'.format(file_num, file_path)) |
|
t0_syncc = time.time() |
|
reg_output_syncc = ants.registration(fix_img_ants, mov_img_ants, 'SyNCC') |
|
t1_syncc = time.time() |
|
|
|
mov_to_fix_trf_syn = reg_output_syn[FWD_TRFS] |
|
mov_to_fix_trf_syncc = reg_output_syn[FWD_TRFS] |
|
if not len(mov_to_fix_trf_syn) and not len(mov_to_fix_trf_syncc): |
|
print('ERR: Registration failed for: '+file_path) |
|
else: |
|
for reg_method, reg_output in zip(['SyN', 'SyNCC'], [reg_output_syn, reg_output_syncc]): |
|
mov_to_fix_trf_list = reg_output[FWD_TRFS] |
|
pred_img = reg_output[WARPED_MOV].numpy() |
|
pred_img = pred_img[..., np.newaxis] |
|
|
|
fix_seg_ants = ants.make_image(fix_seg.shape, np.squeeze(fix_seg)) |
|
mov_seg_ants = ants.make_image(mov_seg.shape, np.squeeze(mov_seg)) |
|
pred_seg = ants.apply_transforms(fixed=fix_seg_ants, moving=mov_seg_ants, |
|
transformlist=mov_to_fix_trf_list).numpy() |
|
pred_seg = np.squeeze(pred_seg) |
|
|
|
dataset_iterator.set_description('{} ({}): Getting metrics {}'.format(file_num, file_path, reg_method)) |
|
with sess.as_default(): |
|
dice = np.mean([medpy_metrics.dc(pred_seg[np.newaxis, ..., l], fix_seg[np.newaxis,..., l]) / np.sum( |
|
fix_seg[np.newaxis,..., l]) for l in range(nb_labels)]) |
|
hd = np.mean( |
|
[medpy_metrics.hd(pred_seg[np.newaxis,..., l], fix_seg[np.newaxis,..., l]) for l in range(nb_labels)]) |
|
hd95 = np.mean( |
|
[medpy_metrics.hd95(pred_seg[np.newaxis,..., l], fix_seg[np.newaxis,..., l]) for l in range(nb_labels)]) |
|
dice_macro = np.mean( |
|
[medpy_metrics.dc(pred_seg[np.newaxis,..., l], fix_seg[np.newaxis,..., l]) for l in range(nb_labels)]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
pred_seg_card = segmentation_ohe_to_cardinal(pred_seg).astype(np.float32) |
|
mov_seg_card = segmentation_ohe_to_cardinal(mov_seg).astype(np.float32) |
|
fix_seg_card = segmentation_ohe_to_cardinal(fix_seg).astype(np.float32) |
|
|
|
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf], |
|
{'fix_img:0': fix_img[np.newaxis, ...], |
|
'pred_img:0': pred_img[np.newaxis, ...] |
|
}) |
|
ssim = np.mean(ssim) |
|
ms_ssim = ms_ssim[0] |
|
|
|
|
|
disp_map = np.squeeze(np.asarray(nb.load(mov_to_fix_trf_list[0]).dataobj)) |
|
dm_interp = DisplacementMapInterpolator(fix_img.shape[:-1], 'griddata', step=2) |
|
pred_centroids = dm_interp(disp_map, mov_centroids, backwards=True) + mov_centroids |
|
|
|
|
|
|
|
|
|
|
|
fix_centroids_isotropic = fix_centroids * voxel_size |
|
pred_centroids_isotropic = pred_centroids * voxel_size |
|
|
|
|
|
|
|
tre_array = target_registration_error(fix_centroids, pred_centroids, False).eval() |
|
tre = np.mean([v for v in tre_array if not np.isnan(v)]) |
|
if np.isnan(tre): |
|
print('TRE is NaN for {} and file {}'.format(reg_method, step)) |
|
|
|
dataset_iterator.set_description('{} ({}): Saving data {}'.format(file_num, file_path, reg_method)) |
|
new_line = [step, ssim, ms_ssim, ncc, mse, dice, dice_macro, hd, hd95, |
|
t1_syn-t0_syn if reg_method == 'SyN' else t1_syncc-t0_syncc, |
|
tre] |
|
with open(metrics_file[reg_method], 'a') as f: |
|
f.write(';'.join(map(str, new_line))+'\n') |
|
if args.savenifti: |
|
save_nifti(fix_img, os.path.join(args.outdirname, reg_method, '{:03d}_fix_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False) |
|
save_nifti(mov_img, os.path.join(args.outdirname, reg_method, '{:03d}_mov_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False) |
|
save_nifti(pred_img, os.path.join(args.outdirname, reg_method, '{:03d}_pred_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False) |
|
save_nifti(fix_seg_card, os.path.join(args.outdirname, reg_method, '{:03d}_fix_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False) |
|
save_nifti(mov_seg_card, os.path.join(args.outdirname, reg_method, '{:03d}_mov_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False) |
|
save_nifti(pred_seg_card, os.path.join(args.outdirname, reg_method, '{:03d}_pred_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False) |
|
|
|
plot_predictions(img_batches=[fix_img[np.newaxis, ...], mov_img[np.newaxis, ...], pred_img[np.newaxis, ...]], disp_map_batch=disp_map[np.newaxis, ...], seg_batches=[fix_seg_card[np.newaxis, ...], mov_seg_card[np.newaxis, ...], pred_seg_card[np.newaxis, ...]], filename=os.path.join(args.outdirname, reg_method, '{:03d}_figures_seg.png'.format(step)), show=False) |
|
plot_predictions(img_batches=[fix_img[np.newaxis, ...], mov_img[np.newaxis, ...], pred_img[np.newaxis, ...]], disp_map_batch=disp_map[np.newaxis, ...], filename=os.path.join(args.outdirname, reg_method, '{:03d}_figures_img.png'.format(step)), show=False) |
|
save_disp_map_img(disp_map[np.newaxis, ...], 'Displacement map', os.path.join(args.outdirname, reg_method, '{:03d}_disp_map_fig.png'.format(step)), show=False) |
|
|
|
for k in metrics_file.keys(): |
|
print('Summary {}\n=======\n'.format(k)) |
|
metrics_df = pd.read_csv(metrics_file[k], sep=';', header=0) |
|
print('\nAVG:\n') |
|
print(metrics_df.mean(axis=0)) |
|
print('\nSTD:\n') |
|
print(metrics_df.std(axis=0)) |
|
print('\nHD95perc:\n') |
|
print(metrics_df['HD'].describe(percentiles=[.95])) |
|
print('\n=======\n') |