|
import os, sys |
|
|
|
currentdir = os.path.dirname(os.path.realpath(__file__)) |
|
parentdir = os.path.dirname(currentdir) |
|
sys.path.append(parentdir) |
|
|
|
PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True' |
|
|
|
import tensorflow as tf |
|
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping |
|
import voxelmorph as vxm |
|
from datetime import datetime |
|
|
|
import ddmr.utils.constants as C |
|
from ddmr.data_generator import DataGeneratorManager2D |
|
from ddmr.utils.misc import try_mkdir |
|
from ddmr.losses import HausdorffDistanceErosion |
|
|
|
|
|
os.environ['CUDA_DEVICE_ORDER'] = C.DEV_ORDER |
|
os.environ['CUDA_VISIBLE_DEVICES'] = C.GPU_NUM |
|
|
|
C.TRAINING_DATASET = '/mnt/EncryptedData1/Users/javier/vessel_registration/ov_dataset/training' |
|
C.BATCH_SIZE = 256 |
|
C.LIMIT_NUM_SAMPLES = None |
|
C.EPOCHS = 10000 |
|
|
|
if PYCHARM_EXEC: |
|
path_prefix = os.path.join('scripts', 'tf') |
|
else: |
|
path_prefix = '' |
|
|
|
|
|
|
|
sample_list = [os.path.join(C.TRAINING_DATASET, f) for f in os.listdir(C.TRAINING_DATASET) if |
|
f.startswith('sample')] |
|
sample_list.sort() |
|
|
|
data_generator = DataGeneratorManager2D(sample_list[:C.LIMIT_NUM_SAMPLES], |
|
C.BATCH_SIZE, C.TRAINING_PERC, |
|
(64, 64, 1), |
|
fix_img_tag='dilated/input/fix', |
|
mov_img_tag='dilated/input/mov' |
|
) |
|
|
|
|
|
in_shape = data_generator.train_generator.input_shape[:-1] |
|
enc_features = [32, 32, 32, 32, 32, 32] |
|
dec_features = [32, 32, 32, 32, 32, 32, 32, 16] |
|
nb_features = [enc_features, dec_features] |
|
vxm_model = vxm.networks.VxmDense(inshape=in_shape, nb_unet_features=nb_features, int_steps=0) |
|
|
|
|
|
def comb_loss(y_true, y_pred): |
|
return 1e-3 * HausdorffDistanceErosion(ndim=2, nerosion=2).loss(y_true, y_pred) + vxm.losses.Dice().loss(y_true, y_pred) |
|
|
|
|
|
losses = [comb_loss, vxm.losses.Grad('l2').loss] |
|
loss_weights = [1, 0.01] |
|
|
|
|
|
vxm_model.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-4), loss=losses, loss_weights=loss_weights) |
|
|
|
|
|
output_folder = os.path.join('train_2d_dice_hausdorff_grad_'+datetime.now().strftime("%H%M%S-%d%m%Y")) |
|
try_mkdir(output_folder) |
|
try_mkdir(os.path.join(output_folder, 'checkpoints')) |
|
try_mkdir(os.path.join(output_folder, 'tensorboard')) |
|
my_callbacks = [ |
|
|
|
ModelCheckpoint(os.path.join(output_folder, 'checkpoints', 'best_model.h5'), |
|
save_best_only=True, monitor='val_loss', verbose=0, mode='min'), |
|
ModelCheckpoint(os.path.join(output_folder, 'checkpoints', 'weights.{epoch:05d}-{val_loss:.2f}.h5'), |
|
save_best_only=True, save_weights_only=True, monitor='val_loss', verbose=0, mode='min'), |
|
|
|
|
|
TensorBoard(log_dir=os.path.join(output_folder, 'tensorboard'), |
|
batch_size=C.BATCH_SIZE, write_images=True, histogram_freq=10, update_freq='epoch', |
|
write_grads=True), |
|
EarlyStopping(monitor='val_loss', verbose=1, patience=50, min_delta=0.0001) |
|
] |
|
hist = vxm_model.fit_generator(data_generator.train_generator, |
|
epochs=C.EPOCHS, |
|
validation_data=data_generator.validation_generator, |
|
verbose=2, |
|
callbacks=my_callbacks) |
|
|