|
|
|
|
|
''' |
|
This is a modification of the SeparableConv3D code in Keras, |
|
to perform just the Depthwise Convolution (1st step) of the |
|
Depthwise Separable Convolution layer. |
|
''' |
|
from __future__ import absolute_import |
|
|
|
from tensorflow.keras import backend as K |
|
from tensorflow.keras import initializers |
|
from tensorflow.keras import regularizers |
|
from tensorflow.keras import constraints |
|
import tensorflow.keras.utils as conv_utils |
|
from tensorflow.keras.layers import Conv3D, InputSpec |
|
from tensorflow.python.keras.backend import _preprocess_padding, _preprocess_conv3d_input |
|
|
|
import tensorflow as tf |
|
|
|
|
|
class DepthwiseConv3D(Conv3D): |
|
"""Depthwise 3D convolution. |
|
Depth-wise part of separable convolutions consist in performing |
|
just the first step/operation |
|
(which acts on each input channel separately). |
|
It does not perform the pointwise convolution (second step). |
|
The `depth_multiplier` argument controls how many |
|
output channels are generated per input channel in the depthwise step. |
|
# Arguments |
|
kernel_size: An integer or tuple/list of 3 integers, specifying the |
|
depth, width and height of the 3D convolution window. |
|
Can be a single integer to specify the same value for |
|
all spatial dimensions. |
|
strides: An integer or tuple/list of 3 integers, |
|
specifying the strides of the convolution along the depth, width and height. |
|
Can be a single integer to specify the same value for |
|
all spatial dimensions. |
|
padding: one of `"valid"` or `"same"` (case-insensitive). |
|
depth_multiplier: The number of depthwise convolution output channels |
|
for each input channel. |
|
The total number of depthwise convolution output |
|
channels will be equal to `filterss_in * depth_multiplier`. |
|
groups: The depth size of the convolution (as a variant of the original Depthwise conv) |
|
data_format: A string, |
|
one of `channels_last` (default) or `channels_first`. |
|
The ordering of the dimensions in the inputs. |
|
`channels_last` corresponds to inputs with shape |
|
`(batch, height, width, channels)` while `channels_first` |
|
corresponds to inputs with shape |
|
`(batch, channels, height, width)`. |
|
It defaults to the `image_data_format` value found in your |
|
Keras config file at `~/.keras/keras.json`. |
|
If you never set it, then it will be "channels_last". |
|
activation: Activation function to use |
|
(see [activations](../activations.md)). |
|
If you don't specify anything, no activation is applied |
|
(ie. "linear" activation: `a(x) = x`). |
|
use_bias: Boolean, whether the layer uses a bias vector. |
|
depthwise_initializer: Initializer for the depthwise kernel matrix |
|
(see [initializers](../initializers.md)). |
|
bias_initializer: Initializer for the bias vector |
|
(see [initializers](../initializers.md)). |
|
depthwise_regularizer: Regularizer function applied to |
|
the depthwise kernel matrix |
|
(see [regularizer](../regularizers.md)). |
|
bias_regularizer: Regularizer function applied to the bias vector |
|
(see [regularizer](../regularizers.md)). |
|
dialation_rate: List of ints. |
|
Defines the dilation factor for each dimension in the |
|
input. Defaults to (1,1,1) |
|
activity_regularizer: Regularizer function applied to |
|
the output of the layer (its "activation"). |
|
(see [regularizer](../regularizers.md)). |
|
depthwise_constraint: Constraint function applied to |
|
the depthwise kernel matrix |
|
(see [constraints](../constraints.md)). |
|
bias_constraint: Constraint function applied to the bias vector |
|
(see [constraints](../constraints.md)). |
|
# Input shape |
|
5D tensor with shape: |
|
`(batch, depth, channels, rows, cols)` if data_format='channels_first' |
|
or 5D tensor with shape: |
|
`(batch, depth, rows, cols, channels)` if data_format='channels_last'. |
|
# Output shape |
|
5D tensor with shape: |
|
`(batch, filters * depth, new_depth, new_rows, new_cols)` if data_format='channels_first' |
|
or 4D tensor with shape: |
|
`(batch, new_depth, new_rows, new_cols, filters * depth)` if data_format='channels_last'. |
|
`rows` and `cols` values might have changed due to padding. |
|
""" |
|
|
|
|
|
def __init__(self, |
|
kernel_size, |
|
strides=(1, 1, 1), |
|
padding='valid', |
|
depth_multiplier=1, |
|
groups=None, |
|
data_format=None, |
|
activation=None, |
|
use_bias=True, |
|
depthwise_initializer='glorot_uniform', |
|
bias_initializer='zeros', |
|
dilation_rate = (1, 1, 1), |
|
depthwise_regularizer=None, |
|
bias_regularizer=None, |
|
activity_regularizer=None, |
|
depthwise_constraint=None, |
|
bias_constraint=None, |
|
**kwargs): |
|
super(DepthwiseConv3D, self).__init__( |
|
filters=None, |
|
kernel_size=kernel_size, |
|
strides=strides, |
|
padding=padding, |
|
data_format=data_format, |
|
activation=activation, |
|
use_bias=use_bias, |
|
bias_regularizer=bias_regularizer, |
|
dilation_rate=dilation_rate, |
|
activity_regularizer=activity_regularizer, |
|
bias_constraint=bias_constraint, |
|
**kwargs) |
|
self.depth_multiplier = depth_multiplier |
|
self.groups = groups |
|
self.depthwise_initializer = initializers.get(depthwise_initializer) |
|
self.depthwise_regularizer = regularizers.get(depthwise_regularizer) |
|
self.depthwise_constraint = constraints.get(depthwise_constraint) |
|
self.bias_initializer = initializers.get(bias_initializer) |
|
self.dilation_rate = dilation_rate |
|
self._padding = _preprocess_padding(self.padding) |
|
self._strides = (1,) + self.strides + (1,) |
|
self._data_format = "NDHWC" |
|
self.input_dim = None |
|
|
|
def build(self, input_shape): |
|
if len(input_shape) < 5: |
|
raise ValueError('Inputs to `DepthwiseConv3D` should have rank 5. ' |
|
'Received input shape:', str(input_shape)) |
|
if self.data_format == 'channels_first': |
|
channel_axis = 1 |
|
else: |
|
channel_axis = -1 |
|
if input_shape[channel_axis] is None: |
|
raise ValueError('The channel dimension of the inputs to ' |
|
'`DepthwiseConv3D` ' |
|
'should be defined. Found `None`.') |
|
self.input_dim = int(input_shape[channel_axis]) |
|
|
|
if self.groups is None: |
|
self.groups = self.input_dim |
|
|
|
if self.groups > self.input_dim: |
|
raise ValueError('The number of groups cannot exceed the number of channels') |
|
|
|
if self.input_dim % self.groups != 0: |
|
raise ValueError('Warning! The channels dimension is not divisible by the group size chosen') |
|
|
|
depthwise_kernel_shape = (self.kernel_size[0], |
|
self.kernel_size[1], |
|
self.kernel_size[2], |
|
self.input_dim, |
|
self.depth_multiplier) |
|
|
|
self.depthwise_kernel = self.add_weight( |
|
shape=depthwise_kernel_shape, |
|
initializer=self.depthwise_initializer, |
|
name='depthwise_kernel', |
|
regularizer=self.depthwise_regularizer, |
|
constraint=self.depthwise_constraint) |
|
|
|
if self.use_bias: |
|
self.bias = self.add_weight(shape=(self.groups * self.depth_multiplier,), |
|
initializer=self.bias_initializer, |
|
name='bias', |
|
regularizer=self.bias_regularizer, |
|
constraint=self.bias_constraint) |
|
else: |
|
self.bias = None |
|
|
|
self.input_spec = InputSpec(ndim=5, axes={channel_axis: self.input_dim}) |
|
self.built = True |
|
|
|
def call(self, inputs, training=None): |
|
inputs = _preprocess_conv3d_input(inputs, self.data_format) |
|
|
|
if self.data_format == 'channels_last': |
|
dilation = (1,) + self.dilation_rate + (1,) |
|
else: |
|
dilation = self.dilation_rate + (1,) + (1,) |
|
|
|
if self._data_format == 'NCDHW': |
|
outputs = tf.concat( |
|
[tf.nn.conv3d(inputs[0][:, i:i+self.input_dim//self.groups, :, :, :], self.depthwise_kernel[:, :, :, i:i+self.input_dim//self.groups, :], |
|
strides=self._strides, |
|
padding=self._padding, |
|
dilations=dilation, |
|
data_format=self._data_format) for i in range(0, self.input_dim, self.input_dim//self.groups)], axis=1) |
|
|
|
else: |
|
outputs = tf.concat( |
|
[tf.nn.conv3d(inputs[0][:, :, :, :, i:i+self.input_dim//self.groups], self.depthwise_kernel[:, :, :, i:i+self.input_dim//self.groups, :], |
|
strides=self._strides, |
|
padding=self._padding, |
|
dilations=dilation, |
|
data_format=self._data_format) for i in range(0, self.input_dim, self.input_dim//self.groups)], axis=-1) |
|
|
|
if self.bias is not None: |
|
outputs = K.bias_add( |
|
outputs, |
|
self.bias, |
|
data_format=self.data_format) |
|
|
|
if self.activation is not None: |
|
return self.activation(outputs) |
|
|
|
return outputs |
|
|
|
def compute_output_shape(self, input_shape): |
|
if self.data_format == 'channels_first': |
|
depth = input_shape[2] |
|
rows = input_shape[3] |
|
cols = input_shape[4] |
|
out_filters = self.groups * self.depth_multiplier |
|
elif self.data_format == 'channels_last': |
|
depth = input_shape[1] |
|
rows = input_shape[2] |
|
cols = input_shape[3] |
|
out_filters = self.groups * self.depth_multiplier |
|
|
|
depth = conv_utils.conv_output_length(depth, self.kernel_size[0], |
|
self.padding, |
|
self.strides[0]) |
|
|
|
rows = conv_utils.conv_output_length(rows, self.kernel_size[1], |
|
self.padding, |
|
self.strides[1]) |
|
|
|
cols = conv_utils.conv_output_length(cols, self.kernel_size[2], |
|
self.padding, |
|
self.strides[2]) |
|
|
|
if self.data_format == 'channels_first': |
|
return (input_shape[0], out_filters, depth, rows, cols) |
|
|
|
elif self.data_format == 'channels_last': |
|
return (input_shape[0], depth, rows, cols, out_filters) |
|
|
|
def get_config(self): |
|
config = super(DepthwiseConv3D, self).get_config() |
|
config.pop('filters') |
|
config.pop('kernel_initializer') |
|
config.pop('kernel_regularizer') |
|
config.pop('kernel_constraint') |
|
config['depth_multiplier'] = self.depth_multiplier |
|
config['depthwise_initializer'] = initializers.serialize(self.depthwise_initializer) |
|
config['depthwise_regularizer'] = regularizers.serialize(self.depthwise_regularizer) |
|
config['depthwise_constraint'] = constraints.serialize(self.depthwise_constraint) |
|
return config |
|
|
|
def __call__(self, inputs, training=True): |
|
return self.call(inputs, training) |
|
|
|
DepthwiseConvolution3D = DepthwiseConv3D |
|
|