Commit
·
0e7de0a
1
Parent(s):
a290524
Works when providing the segmentation masks of the images
Browse files- DeepDeformationMapRegistration/main.py +326 -355
DeepDeformationMapRegistration/main.py
CHANGED
@@ -1,104 +1,238 @@
|
|
1 |
-
|
2 |
-
# 1. Image files generator
|
3 |
-
|
4 |
-
# timer start
|
5 |
-
# 2. Preprocess the image
|
6 |
-
# 3. Predict the displacement
|
7 |
-
# timer stop
|
8 |
-
|
9 |
-
# 4. Evaluate the registration: NCC; SSIM; DICE; HD95
|
10 |
-
|
11 |
import os, sys
|
12 |
-
|
13 |
import shutil
|
|
|
|
|
|
|
|
|
14 |
import time
|
15 |
-
import tkinter
|
16 |
-
|
17 |
-
import h5py
|
18 |
-
import matplotlib.pyplot as plt
|
19 |
|
20 |
currentdir = os.path.dirname(os.path.realpath(__file__))
|
21 |
parentdir = os.path.dirname(currentdir)
|
22 |
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
|
23 |
|
24 |
import tensorflow as tf
|
25 |
-
# tf.enable_eager_execution(config=config)
|
26 |
|
27 |
import numpy as np
|
28 |
-
import
|
|
|
|
|
|
|
|
|
29 |
import voxelmorph as vxm
|
30 |
from voxelmorph.tf.layers import SpatialTransformer
|
31 |
|
32 |
import DeepDeformationMapRegistration.utils.constants as C
|
33 |
-
from DeepDeformationMapRegistration.utils.operators import min_max_norm, safe_medpy_metric
|
34 |
from DeepDeformationMapRegistration.utils.nifti_utils import save_nifti
|
35 |
-
from DeepDeformationMapRegistration.
|
36 |
-
from DeepDeformationMapRegistration.losses import StructuralSimilarity_simplified, NCC, GeneralizedDICEScore, HausdorffDistanceErosion, target_registration_error
|
37 |
from DeepDeformationMapRegistration.ms_ssim_tf import MultiScaleStructuralSimilarity
|
38 |
-
from DeepDeformationMapRegistration.utils.
|
39 |
-
from DeepDeformationMapRegistration.utils.
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
|
50 |
-
import re
|
51 |
-
from Brain_study.data_generator import BatchGenerator
|
52 |
|
53 |
-
import argparse
|
54 |
|
55 |
-
|
56 |
-
|
|
|
57 |
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
MODELS_FILE = {'liver': {'BL-N': './models/liver/bl_ncc.h5',
|
63 |
-
'BL-S': './models/liver/bl_ssim.h5',
|
64 |
-
'SG-ND': './models/liver/sg_ncc_dsc.h5',
|
65 |
-
'SD-NSD': './models/liver/sg_ncc_ssim_dsc.h5',
|
66 |
-
'UW-NSD': './models/liver/uw_ncc_ssim_dsc.h5',
|
67 |
-
'UW-NSDH': './models/liver/uw_ncc_ssim_dsc_hd.h5',
|
68 |
-
},
|
69 |
-
'brain': {'BL-N': './models/brain/bl_ncc.h5',
|
70 |
-
'BL-S': './models/brain/bl_ssim.h5',
|
71 |
-
'SG-ND': './models/brain/sg_ncc_dsc.h5',
|
72 |
-
'SD-NSD': './models/brain/sg_ncc_ssim_dsc.h5',
|
73 |
-
'UW-NSD': './models/brain/uw_ncc_ssim_dsc.h5',
|
74 |
-
'UW-NSDH': './models/brain/uw_ncc_ssim_dsc_hd.h5',
|
75 |
-
}
|
76 |
-
}
|
77 |
|
78 |
if __name__ == '__main__':
|
79 |
parser = argparse.ArgumentParser()
|
80 |
parser.add_argument('-f', '--fixed', type=str, help='Path to fixed image file (NIfTI)')
|
81 |
-
parser.add_argument('-m', '--moving', type=str, help='Path to
|
|
|
|
|
|
|
82 |
parser.add_argument('-o', '--outputdir', type=str, help='Output directory', default='./Registration_output')
|
83 |
-
parser.add_argument('--
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
# parser.add_argument('--brain', type=bool, action='store_true', help='Perform brain MRi registration', default=False)
|
86 |
args = parser.parse_args()
|
87 |
-
logger = logging.getLogger(__name__)
|
88 |
|
89 |
assert os.path.exists(args.fixed), 'Fixed image not found'
|
90 |
assert os.path.exists(args.moving), 'Moving image not found'
|
91 |
assert args.model in ['BL-N', 'BL-S', 'SG-ND', 'SG-NSD', 'UW-NSD', 'UW-NSDH'], 'Invalid model type'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
if isinstance(args.gpu, int):
|
94 |
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
|
95 |
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) # Check availability before running using 'nvidia-smi'
|
|
|
|
|
|
|
96 |
|
97 |
# Load the file and preprocess it
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
# TF stuff
|
|
|
102 |
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
|
103 |
config.gpu_options.allow_growth = True
|
104 |
config.log_device_placement = False ## to log device placement (on which device the operation ran)
|
@@ -108,303 +242,140 @@ if __name__ == '__main__':
|
|
108 |
tf.compat.v1.keras.backend.set_session(sess)
|
109 |
|
110 |
# Preprocess data
|
111 |
-
if args.erase:
|
112 |
-
shutil.rmtree(args.outputdir, ignore_errors=True)
|
113 |
-
os.makedirs(args.outputdir, exist_ok=True)
|
114 |
-
lm_output_dir = os.path.join(args.outputdir, 'livermask')
|
115 |
-
os.makedirs(lm_output_dir, exist_ok=True)
|
116 |
-
|
117 |
# 1. Run Livermask to get the mask around the liver in both the fixed and moving image
|
118 |
-
logger.info('Getting
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
# 2.
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
# 3. Build the whole graph
|
133 |
-
|
134 |
-
|
135 |
-
# Loss and metric functions. Common to all models
|
136 |
-
# loss_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).loss,
|
137 |
-
# NCC(image_input_shape).loss,
|
138 |
-
# vxm.losses.MSE().loss,
|
139 |
-
# MultiScaleStructuralSimilarity(max_val=1., filter_size=3).loss]
|
140 |
-
#
|
141 |
-
# metric_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric,
|
142 |
-
# NCC(image_input_shape).metric,
|
143 |
-
# vxm.losses.MSE().loss,
|
144 |
-
# MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric,
|
145 |
-
# GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric,
|
146 |
-
# HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [nb_labels]).metric,
|
147 |
-
# GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric_macro]
|
148 |
-
|
149 |
### METRICS GRAPH ###
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
#
|
162 |
-
#
|
163 |
-
|
164 |
-
#
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
fix_seg_isot = zoom(fix_seg[0, ...], zoom_factors, order=0)[np.newaxis, ...]
|
254 |
-
|
255 |
-
pred_img_isot = zoom(pred_img[0, ...], zoom_factors, order=3)[np.newaxis, ...]
|
256 |
-
fix_img_isot = zoom(fix_img[0, ...], zoom_factors, order=3)[np.newaxis, ...]
|
257 |
-
|
258 |
-
# I need the labels to be OHE to compute the segmentation metrics.
|
259 |
-
# dice, hd, dice_macro = sess.run([dice_tf, hd_tf, dice_macro_tf], {'fix_seg:0': fix_seg, 'pred_seg:0': pred_seg})
|
260 |
-
dice = np.mean([medpy_metrics.dc(pred_seg_isot[0, ..., l], fix_seg_isot[0, ..., l]) / np.sum(fix_seg_isot[0, ..., l]) for l in range(nb_labels)])
|
261 |
-
hd = np.mean(safe_medpy_metric(pred_seg_isot[0, ...], fix_seg_isot[0, ...], nb_labels, medpy_metrics.hd, {'voxelspacing': voxel_size}))
|
262 |
-
dice_macro = np.mean([medpy_metrics.dc(pred_seg_isot[0, ..., l], fix_seg_isot[0, ..., l]) for l in range(nb_labels)])
|
263 |
-
|
264 |
-
pred_seg_card = segmentation_ohe_to_cardinal(pred_seg).astype(np.float32)
|
265 |
-
mov_seg_card = segmentation_ohe_to_cardinal(mov_seg).astype(np.float32)
|
266 |
-
fix_seg_card = segmentation_ohe_to_cardinal(fix_seg).astype(np.float32)
|
267 |
-
|
268 |
-
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf], {'fix_img:0': fix_img, 'pred_img:0': pred_img})
|
269 |
-
ssim = np.mean(ssim)
|
270 |
-
ms_ssim = ms_ssim[0]
|
271 |
-
|
272 |
-
# Rescale the points back to isotropic space, where we have a correspondence voxel <-> mm
|
273 |
-
fix_centroids_isotropic = fix_centroids * voxel_size
|
274 |
-
# mov_centroids_isotropic = mov_centroids * voxel_size
|
275 |
-
pred_centroids_isotropic = pred_centroids * voxel_size
|
276 |
-
|
277 |
-
# fix_centroids_isotropic = np.divide(fix_centroids_isotropic, C.COMET_DATASET_iso_to_cubic_scales)
|
278 |
-
# # mov_centroids_isotropic = np.divide(mov_centroids_isotropic, C.COMET_DATASET_iso_to_cubic_scales)
|
279 |
-
# pred_centroids_isotropic = np.divide(pred_centroids_isotropic, C.COMET_DATASET_iso_to_cubic_scales)
|
280 |
-
# Now we can measure the TRE in mm
|
281 |
-
tre_array = target_registration_error(fix_centroids_isotropic, pred_centroids_isotropic, False).eval()
|
282 |
-
tre = np.mean([v for v in tre_array if not np.isnan(v)])
|
283 |
-
# ['File', 'SSIM', 'MS-SSIM', 'NCC', 'MSE', 'DICE', 'HD', 'Time', 'TRE', 'No_missing_lbls', 'Missing_lbls']
|
284 |
-
|
285 |
-
new_line = [step, ssim, ms_ssim, ncc, mse, dice, dice_macro, hd, t1-t0, tre, len(missing_lbls), missing_lbls]
|
286 |
-
with open(metrics_file, 'a') as f:
|
287 |
-
f.write(';'.join(map(str, new_line))+'\n')
|
288 |
-
|
289 |
-
save_nifti(fix_img[0, ...], os.path.join(output_folder, '{:03d}_fix_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
290 |
-
save_nifti(mov_img[0, ...], os.path.join(output_folder, '{:03d}_mov_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
291 |
-
save_nifti(pred_img[0, ...], os.path.join(output_folder, '{:03d}_pred_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
292 |
-
save_nifti(fix_seg_card[0, ...], os.path.join(output_folder, '{:03d}_fix_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
293 |
-
save_nifti(mov_seg_card[0, ...], os.path.join(output_folder, '{:03d}_mov_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
294 |
-
save_nifti(pred_seg_card[0, ...], os.path.join(output_folder, '{:03d}_pred_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
295 |
-
|
296 |
-
# with h5py.File(os.path.join(output_folder, '{:03d}_centroids.h5'.format(step)), 'w') as f:
|
297 |
-
# f.create_dataset('fix_centroids', dtype=np.float32, data=fix_centroids)
|
298 |
-
# f.create_dataset('mov_centroids', dtype=np.float32, data=mov_centroids)
|
299 |
-
# f.create_dataset('pred_centroids', dtype=np.float32, data=pred_centroids)
|
300 |
-
# f.create_dataset('fix_centroids_isotropic', dtype=np.float32, data=fix_centroids_isotropic)
|
301 |
-
# f.create_dataset('mov_centroids_isotropic', dtype=np.float32, data=mov_centroids_isotropic)
|
302 |
-
|
303 |
-
# magnitude = np.sqrt(np.sum(disp_map[0, ...] ** 2, axis=-1))
|
304 |
-
# _ = plt.hist(magnitude.flatten())
|
305 |
-
# plt.title('Histogram of disp. magnitudes')
|
306 |
-
# plt.show(block=False)
|
307 |
-
# plt.savefig(os.path.join(output_folder, '{:03d}_hist_mag_ssim_{:.03f}_dice_{:.03f}.png'.format(step, ssim, dice)))
|
308 |
-
# plt.close()
|
309 |
-
|
310 |
-
plot_predictions(img_batches=[fix_img, mov_img, pred_img], disp_map_batch=disp_map, seg_batches=[fix_seg_card, mov_seg_card, pred_seg_card], filename=os.path.join(output_folder, '{:03d}_figures_seg.png'.format(step)), show=False, step=16)
|
311 |
-
plot_predictions(img_batches=[fix_img, mov_img, pred_img], disp_map_batch=disp_map, filename=os.path.join(output_folder, '{:03d}_figures_img.png'.format(step)), show=False, step=16)
|
312 |
-
save_disp_map_img(disp_map, 'Displacement map', os.path.join(output_folder, '{:03d}_disp_map_fig.png'.format(step)), show=False, step=16)
|
313 |
-
|
314 |
-
progress_bar.set_description('SSIM {:.04f}\tM_DICE: {:.04f}'.format(ssim, dice_macro))
|
315 |
-
|
316 |
-
if args.fullres:
|
317 |
-
with h5py.File(list_test_fr_files[step - 1], 'r') as f:
|
318 |
-
fix_img = f['fix_image'][:][np.newaxis, ...] # Add batch axis
|
319 |
-
mov_img = f['mov_image'][:][np.newaxis, ...]
|
320 |
-
fix_seg = f['fix_segmentations'][:][np.newaxis, ...].astype(np.float32)
|
321 |
-
mov_seg = f['mov_segmentations'][:][np.newaxis, ...].astype(np.float32)
|
322 |
-
fix_centroids = f['fix_centroids'][:]
|
323 |
-
|
324 |
-
# Up sample the displacement map to the full res
|
325 |
-
trf = scale_transformation(image_output_shape, fix_img.shape[1:-1])
|
326 |
-
disp_map_fr = resize_displacement_map(np.squeeze(disp_map), None, trf)[np.newaxis, ...]
|
327 |
-
disp_map_fr = gaussian_filter(disp_map_fr, 5)
|
328 |
-
# disp_mad_fr = sess.run(smooth_filter, feed_dict={'dm:0': disp_map_fr})
|
329 |
-
|
330 |
-
# Predicted image
|
331 |
-
pred_img_fr = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([mov_img, disp_map_fr]).eval()
|
332 |
-
pred_seg_fr = SpatialTransformer(interp_method='nearest', indexing='ij', single_transform=False)([mov_seg, disp_map_fr]).eval()
|
333 |
-
|
334 |
-
# Predicted centroids
|
335 |
-
dm_interp_fr = DisplacementMapInterpolator(fix_img.shape[1:-1], 'griddata', step=2)
|
336 |
-
pred_centroids = dm_interp_fr(disp_map_fr, mov_centroids, backwards=True) + mov_centroids
|
337 |
-
|
338 |
-
# Metrics - segmentation
|
339 |
-
dice = np.mean([medpy_metrics.dc(pred_seg_fr[..., l], fix_seg[..., l]) / np.sum(fix_seg[..., l]) for l in range(nb_labels)])
|
340 |
-
hd = np.mean(safe_medpy_metric(pred_seg[0, ...], fix_seg[0, ...], nb_labels, medpy_metrics.hd, {'voxelspacing': voxel_size}))
|
341 |
-
dice_macro = np.mean([medpy_metrics.dc(pred_seg_fr[..., l], fix_seg[..., l]) for l in range(nb_labels)])
|
342 |
-
|
343 |
-
pred_seg_card_fr = segmentation_ohe_to_cardinal(pred_seg_fr).astype(np.float32)
|
344 |
-
mov_seg_card_fr = segmentation_ohe_to_cardinal(mov_seg).astype(np.float32)
|
345 |
-
fix_seg_card_fr = segmentation_ohe_to_cardinal(fix_seg).astype(np.float32)
|
346 |
-
|
347 |
-
# Metrics - image
|
348 |
-
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
|
349 |
-
{'fix_img:0': fix_img, 'pred_img:0': pred_img_fr})
|
350 |
-
ssim = np.mean(ssim)
|
351 |
-
ms_ssim = ms_ssim[0]
|
352 |
-
|
353 |
-
# Metrics - registration
|
354 |
-
tre_array = target_registration_error(fix_centroids, pred_centroids, False).eval()
|
355 |
-
|
356 |
-
new_line = [step, ssim, ms_ssim, ncc, mse, dice, dice_macro, hd, t1 - t0, tre, len(missing_lbls),
|
357 |
-
missing_lbls]
|
358 |
-
with open(metrics_file_fr, 'a') as f:
|
359 |
-
f.write(';'.join(map(str, new_line)) + '\n')
|
360 |
-
|
361 |
-
save_nifti(fix_img[0, ...], os.path.join(output_folder_fr, '{:03d}_fix_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
362 |
-
save_nifti(mov_img[0, ...], os.path.join(output_folder_fr, '{:03d}_mov_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
363 |
-
save_nifti(pred_img[0, ...], os.path.join(output_folder_fr, '{:03d}_pred_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
364 |
-
save_nifti(fix_seg_card[0, ...], os.path.join(output_folder_fr, '{:03d}_fix_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
365 |
-
save_nifti(mov_seg_card[0, ...], os.path.join(output_folder_fr, '{:03d}_mov_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
366 |
-
save_nifti(pred_seg_card[0, ...], os.path.join(output_folder_fr, '{:03d}_pred_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
367 |
-
|
368 |
-
# with h5py.File(os.path.join(output_folder, '{:03d}_centroids.h5'.format(step)), 'w') as f:
|
369 |
-
# f.create_dataset('fix_centroids', dtype=np.float32, data=fix_centroids)
|
370 |
-
# f.create_dataset('mov_centroids', dtype=np.float32, data=mov_centroids)
|
371 |
-
# f.create_dataset('pred_centroids', dtype=np.float32, data=pred_centroids)
|
372 |
-
# f.create_dataset('fix_centroids_isotropic', dtype=np.float32, data=fix_centroids_isotropic)
|
373 |
-
# f.create_dataset('mov_centroids_isotropic', dtype=np.float32, data=mov_centroids_isotropic)
|
374 |
-
|
375 |
-
# magnitude = np.sqrt(np.sum(disp_map[0, ...] ** 2, axis=-1))
|
376 |
-
# _ = plt.hist(magnitude.flatten())
|
377 |
-
# plt.title('Histogram of disp. magnitudes')
|
378 |
-
# plt.show(block=False)
|
379 |
-
# plt.savefig(os.path.join(output_folder, '{:03d}_hist_mag_ssim_{:.03f}_dice_{:.03f}.png'.format(step, ssim, dice)))
|
380 |
-
# plt.close()
|
381 |
-
|
382 |
-
plot_predictions(img_batches=[fix_img, mov_img, pred_img_fr], disp_map_batch=disp_map_fr, seg_batches=[fix_seg_card_fr, mov_seg_card_fr, pred_seg_card_fr], filename=os.path.join(output_folder_fr, '{:03d}_figures_seg.png'.format(step)), show=False, step=10)
|
383 |
-
plot_predictions(img_batches=[fix_img, mov_img, pred_img_fr], disp_map_batch=disp_map_fr, filename=os.path.join(output_folder_fr, '{:03d}_figures_img.png'.format(step)), show=False, step=10)
|
384 |
-
# save_disp_map_img(disp_map_fr, 'Displacement map', os.path.join(output_folder_fr, '{:03d}_disp_map_fig.png'.format(step)), show=False, step=10)
|
385 |
-
|
386 |
-
progress_bar.set_description('[FR] SSIM {:.04f}\tM_DICE: {:.04f}'.format(ssim, dice_macro))
|
387 |
-
|
388 |
-
print('Summary\n=======\n')
|
389 |
-
metrics_df = pd.read_csv(metrics_file, sep=';', header=0)
|
390 |
-
print('\nAVG:\n')
|
391 |
-
print(metrics_df.mean(axis=0))
|
392 |
-
print('\nSTD:\n')
|
393 |
-
print(metrics_df.std(axis=0))
|
394 |
-
print('\nHD95perc:\n')
|
395 |
-
print(metrics_df['HD'].describe(percentiles=[.95]))
|
396 |
-
print('\n=======\n')
|
397 |
-
if args.fullres:
|
398 |
-
print('Summary full resolution\n=======\n')
|
399 |
-
metrics_df = pd.read_csv(metrics_file_fr, sep=';', header=0)
|
400 |
-
print('\nAVG:\n')
|
401 |
-
print(metrics_df.mean(axis=0))
|
402 |
-
print('\nSTD:\n')
|
403 |
-
print(metrics_df.std(axis=0))
|
404 |
-
print('\nHD95perc:\n')
|
405 |
-
print(metrics_df['HD'].describe(percentiles=[.95]))
|
406 |
-
print('\n=======\n')
|
407 |
-
tf.keras.backend.clear_session()
|
408 |
-
# sess.close()
|
409 |
-
del network
|
410 |
-
print('Done')
|
|
|
1 |
+
import datetime
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import os, sys
|
|
|
3 |
import shutil
|
4 |
+
import re
|
5 |
+
import argparse
|
6 |
+
import subprocess
|
7 |
+
import logging
|
8 |
import time
|
|
|
|
|
|
|
|
|
9 |
|
10 |
currentdir = os.path.dirname(os.path.realpath(__file__))
|
11 |
parentdir = os.path.dirname(currentdir)
|
12 |
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
|
13 |
|
14 |
import tensorflow as tf
|
|
|
15 |
|
16 |
import numpy as np
|
17 |
+
import nibabel as nib
|
18 |
+
from scipy.ndimage import gaussian_filter, zoom
|
19 |
+
from skimage.measure import regionprops
|
20 |
+
import SimpleITK as sitk
|
21 |
+
|
22 |
import voxelmorph as vxm
|
23 |
from voxelmorph.tf.layers import SpatialTransformer
|
24 |
|
25 |
import DeepDeformationMapRegistration.utils.constants as C
|
|
|
26 |
from DeepDeformationMapRegistration.utils.nifti_utils import save_nifti
|
27 |
+
from DeepDeformationMapRegistration.losses import StructuralSimilarity_simplified, NCC
|
|
|
28 |
from DeepDeformationMapRegistration.ms_ssim_tf import MultiScaleStructuralSimilarity
|
29 |
+
from DeepDeformationMapRegistration.utils.operators import min_max_norm
|
30 |
+
from DeepDeformationMapRegistration.utils.misc import resize_displacement_map
|
31 |
+
|
32 |
+
|
33 |
+
MODELS_FILE = {'L': {'BL-N': './models/liver/bl_ncc.h5',
|
34 |
+
'BL-S': './models/liver/bl_ncc_ssim.h5',
|
35 |
+
'SG-ND': './models/liver/sg_ncc_dsc.h5',
|
36 |
+
'SD-NSD': './models/liver/sg_ncc_ssim_dsc.h5',
|
37 |
+
'UW-NSD': './models/liver/uw_ncc_ssim_dsc.h5',
|
38 |
+
'UW-NSDH': './models/liver/uw_ncc_ssim_dsc_hd.h5',
|
39 |
+
},
|
40 |
+
'B': {'BL-N': './models/brain/bl_ncc.h5',
|
41 |
+
'BL-S': './models/brain/bl_ncc_ssim.h5',
|
42 |
+
'SG-ND': './models/brain/sg_ncc_dsc.h5',
|
43 |
+
'SD-NSD': './models/brain/sg_ncc_ssim_dsc.h5',
|
44 |
+
'UW-NSD': './models/brain/uw_ncc_ssim_dsc.h5',
|
45 |
+
'UW-NSDH': './models/brain/uw_ncc_ssim_dsc_hd.h5',
|
46 |
+
}
|
47 |
+
}
|
48 |
|
49 |
+
IMAGE_INTPUT_SHAPE = np.asarray([128, 128, 128, 1])
|
|
|
|
|
50 |
|
|
|
51 |
|
52 |
+
def rigidly_align_images(image_1: str, image_2: str) -> nib.Nifti1Image:
|
53 |
+
"""
|
54 |
+
Rigidly align the images and resample to the same array size, to the dense displacement map is correct
|
55 |
|
56 |
+
"""
|
57 |
+
def resample_to_isotropic(image: sitk.Image) -> sitk.Image:
|
58 |
+
spacing = image.GetSpacing()
|
59 |
+
spacing = min(spacing)
|
60 |
+
resamp_spacing = [spacing] * image.GetDimension()
|
61 |
+
resamp_size = [int(round(or_size*or_space/spacing)) for or_size, or_space in zip(image.GetSize(), image.GetSpacing())]
|
62 |
+
return sitk.Resample(image,
|
63 |
+
resamp_size, sitk.Transform(), sitk.sitkLinear,image.GetOrigin(),
|
64 |
+
resamp_spacing, image.GetDirection(), 0, image.GetPixelID())
|
65 |
|
66 |
+
image_1 = sitk.ReadImage(image_1, sitk.sitkFloat32)
|
67 |
+
image_2 = sitk.ReadImage(image_2, sitk.sitkFloat32)
|
68 |
+
|
69 |
+
image_1 = resample_to_isotropic(image_1)
|
70 |
+
image_2 = resample_to_isotropic(image_2)
|
71 |
+
|
72 |
+
rig_reg = sitk.ImageRegistrationMethod()
|
73 |
+
rig_reg.SetMetricAsMeanSquares()
|
74 |
+
rig_reg.SetOptimizerAsRegularStepGradientDescent(4.0, 0.01, 200)
|
75 |
+
rig_reg.SetInitialTransform(sitk.TranslationTransform(image_1.GetDimension()))
|
76 |
+
rig_reg.SetInterpolator(sitk.sitkLinear)
|
77 |
+
|
78 |
+
print('Running rigid registration...')
|
79 |
+
rig_reg_trf = rig_reg.Execute(image_1, image_2)
|
80 |
+
print('Rigid registration completed\n----------------------------')
|
81 |
+
print('Optimizer stop condition: {}'.format(rig_reg.GetOptimizerStopConditionDescription()))
|
82 |
+
print('Iteration: {}'.format(rig_reg.GetOptimizerIteration()))
|
83 |
+
print('Metric value: {}'.format(rig_reg.GetMetricValue()))
|
84 |
+
|
85 |
+
resampler = sitk.ResampleImageFilter()
|
86 |
+
resampler.SetReferenceImage(image_1)
|
87 |
+
resampler.SetInterpolator(sitk.sitkLinear)
|
88 |
+
resampler.SetDefaultPixelValue(100)
|
89 |
+
resampler.SetTransform(rig_reg_trf)
|
90 |
+
|
91 |
+
image_2 = resampler.Execute(image_2)
|
92 |
+
|
93 |
+
# TODO: Build a common image to hold both image_1 and image_2
|
94 |
+
|
95 |
+
|
96 |
+
def pad_images(image_1: nib.Nifti1Image, image_2: nib.Nifti1Image):
|
97 |
+
"""
|
98 |
+
Align image_1 and image_2 by the top left corner and pad them to the largest dimensions along the three axes
|
99 |
+
"""
|
100 |
+
joint_image_shape = np.maximum(image_1.shape, image_2.shape)
|
101 |
+
pad_1 = [[0, p] for p in joint_image_shape - image_1.shape]
|
102 |
+
pad_2 = [[0, p] for p in joint_image_shape - image_2.shape]
|
103 |
+
image_1_padded = np.pad(image_1.dataobj, pad_1, mode='edge')
|
104 |
+
image_2_padded = np.pad(image_2.dataobj, pad_2, mode='edge')
|
105 |
+
|
106 |
+
return image_1_padded, image_2_padded
|
107 |
+
|
108 |
+
|
109 |
+
def pad_displacement_map(disp_map: np.ndarray, crop_min: np.ndarray, crop_max: np.ndarray, output_shape: (np.ndarray, list)) -> np.ndarray:
|
110 |
+
padding = [[crop_min[i], image_shape_or[i] - crop_max[i]] for i in range(3)] + [[0, 0]]
|
111 |
+
return np.pad(disp_map, padding, mode='constant')
|
112 |
+
|
113 |
+
|
114 |
+
def run_livermask(input_image_path, outputdir, filename: str = 'segmentation') -> np.ndarray:
|
115 |
+
logger.info('Getting parenchyma segmentations...')
|
116 |
+
shutil.copy2(input_image_path, os.path.join(outputdir, f'{filename}.nii.gz'))
|
117 |
+
livermask_cmd = "{} -m livermask.livermask --input {} --output {}".format(sys.executable,
|
118 |
+
input_image_path,
|
119 |
+
os.path.join(outputdir,
|
120 |
+
f'{filename}.nii.gz'))
|
121 |
+
subprocess.run(livermask_cmd)
|
122 |
+
logger.info('done!')
|
123 |
+
segmentation_path = os.path.join(outputdir, f'{filename}.nii.gz')
|
124 |
+
return np.asarray(nib.load(segmentation_path).dataobj, dtype=int)
|
125 |
+
|
126 |
+
|
127 |
+
def debug_save_image(image: (np.ndarray, nib.Nifti1Image), filename: str, outputdir: str, debug: bool = True):
|
128 |
+
def disp_map_modulus(disp_map, scale: float = None):
|
129 |
+
disp_map_mod = np.sqrt(np.sum(np.power(disp_map, 2), -1))
|
130 |
+
if scale:
|
131 |
+
min_disp = np.min(disp_map_mod)
|
132 |
+
max_disp = np.max(disp_map_mod)
|
133 |
+
disp_map_mod = disp_map_mod - min_disp / (max_disp - min_disp)
|
134 |
+
disp_map_mod *= scale
|
135 |
+
logger.debug('Scaled displacement map to [0., 1.] range')
|
136 |
+
return disp_map_mod
|
137 |
+
|
138 |
+
if debug:
|
139 |
+
os.makedirs(os.path.join(outputdir, 'debug'), exist_ok=True)
|
140 |
+
if image.shape[-1] > 1:
|
141 |
+
image = disp_map_modulus(image, 1.)
|
142 |
+
save_nifti(image, os.path.join(outputdir, 'debug', filename+'.nii.gz'), verbose=False)
|
143 |
+
logger.debug(f'Saved {filename} at {os.path.join(outputdir, filename+".nii.gz")}')
|
144 |
+
|
145 |
+
|
146 |
+
def get_roi(image_filepath: str,
|
147 |
+
anatomy: str,
|
148 |
+
outputdir: str,
|
149 |
+
filename_filepath: str = 'segmentation',
|
150 |
+
segmentation_file: str = None,
|
151 |
+
debug: bool = False) -> list:
|
152 |
+
segm = None
|
153 |
+
if segmentation_file is None and anatomy == 'L':
|
154 |
+
segm = run_livermask(image_filepath, outputdir, filename_filepath)
|
155 |
+
logger.info(f'Loaded segmentation using livermask from {os.path.join(outputdir, filename_filepath)}')
|
156 |
+
elif segmentation_file is not None:
|
157 |
+
segm = np.asarray(nib.load(segmentation_file).dataobj, dtype=int)
|
158 |
+
logger.info(f'Loaded fixed segmentation from {segmentation_file}')
|
159 |
+
else:
|
160 |
+
logger.warning('No segmentation provided! Using the full volume')
|
161 |
+
if segm is not None:
|
162 |
+
segm[segm > 0] = 1
|
163 |
+
ret_val = regionprops(segm)[0].bbox
|
164 |
+
debug_save_image(segm, f'img_1_{filename_filepath}', outputdir, debug)
|
165 |
+
else:
|
166 |
+
ret_val = [0, 0, 0] + list(nib.load(image_filepath).shape[:3])
|
167 |
+
logger.debug(f'ROI found at coordinates {ret_val}')
|
168 |
+
return ret_val
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
if __name__ == '__main__':
|
172 |
parser = argparse.ArgumentParser()
|
173 |
parser.add_argument('-f', '--fixed', type=str, help='Path to fixed image file (NIfTI)')
|
174 |
+
parser.add_argument('-m', '--moving', type=str, help='Path to moving segmentation image file (NIfTI)', default=None)
|
175 |
+
parser.add_argument('-F', '--fixedsegm', type=str, help='Path to fixed image segmentation file(NIfTI)',
|
176 |
+
default=None)
|
177 |
+
parser.add_argument('-M', '--movingsegm', type=str, help='Path to moving image file (NIfTI)')
|
178 |
parser.add_argument('-o', '--outputdir', type=str, help='Output directory', default='./Registration_output')
|
179 |
+
parser.add_argument('-a', '--anatomy', type=str, help='Anatomical structure: liver (L) (Default) or brain (B)',
|
180 |
+
default='L')
|
181 |
+
parser.add_argument('--gpu', type=int,
|
182 |
+
help='In case of multi-GPU systems, limits the execution to the defined GPU number',
|
183 |
+
default=None)
|
184 |
+
parser.add_argument('--model', type=str, help='Which model to use: BL-N, BL-S, SG-ND, SG-NSD, UW-NSD, UW-NSDH',
|
185 |
+
default='UW-NSD')
|
186 |
+
parser.add_argument('--debug', '-d', action='store_true', help='Produce additional debug information', default=False)
|
187 |
+
parser.add_argument('-y', action='store_true', help='Erase output folder if this has content', default=False)
|
188 |
# parser.add_argument('--brain', type=bool, action='store_true', help='Perform brain MRi registration', default=False)
|
189 |
args = parser.parse_args()
|
|
|
190 |
|
191 |
assert os.path.exists(args.fixed), 'Fixed image not found'
|
192 |
assert os.path.exists(args.moving), 'Moving image not found'
|
193 |
assert args.model in ['BL-N', 'BL-S', 'SG-ND', 'SG-NSD', 'UW-NSD', 'UW-NSDH'], 'Invalid model type'
|
194 |
+
assert args.anatomy in ['L', 'B'], 'Invalid anatomy option'
|
195 |
+
|
196 |
+
if os.path.exists(args.outputdir) and len(os.listdir(args.outputdir)):
|
197 |
+
if args.y:
|
198 |
+
erase = 'y'
|
199 |
+
else:
|
200 |
+
erase = input('Output directory is not empty, erase content? (y/n)')
|
201 |
+
if erase.lower() in ['y', 'yes']:
|
202 |
+
shutil.rmtree(args.outputdir, ignore_errors=True)
|
203 |
+
print('Erased directory: ' + args.outputdir)
|
204 |
+
elif erase.lower() in ['n', 'no']:
|
205 |
+
args.outputdir = os.path.join(args.outputdir, datetime.datetime.now().strftime('%H%M%S_%Y%m%d'))
|
206 |
+
print('New output directory: ' + args.outputdir)
|
207 |
+
os.makedirs(args.outputdir, exist_ok=True)
|
208 |
|
209 |
+
log_format = '%(asctime)s [%(levelname)s]:\t%(message)s'
|
210 |
+
logging.basicConfig(filename=os.path.join(args.outputdir, 'log.log'), filemode='w',
|
211 |
+
format=log_format, datefmt='%Y-%m-%d %H:%M:%S')
|
212 |
+
logger = logging.getLogger(__name__)
|
213 |
+
stdout_handler = logging.StreamHandler(sys.stdout)
|
214 |
+
stdout_handler.setFormatter(logging.Formatter(log_format, datefmt='%Y-%m-%d %H:%M:%S'))
|
215 |
+
logger.addHandler(stdout_handler)
|
216 |
if isinstance(args.gpu, int):
|
217 |
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
|
218 |
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) # Check availability before running using 'nvidia-smi'
|
219 |
+
if args.debug:
|
220 |
+
logger.setLevel('DEBUG')
|
221 |
+
logger.debug('DEBUG MODE ENABLED')
|
222 |
|
223 |
# Load the file and preprocess it
|
224 |
+
logger.info('Loading image files')
|
225 |
+
fixed_image_or = nib.load(args.fixed)
|
226 |
+
moving_image_or = nib.load(args.moving)
|
227 |
+
image_shape_or = np.asarray(fixed_image_or.shape)
|
228 |
+
fixed_image_or, moving_image_or = pad_images(fixed_image_or, moving_image_or)
|
229 |
+
fixed_image_or = fixed_image_or[..., np.newaxis] # add channel dim
|
230 |
+
moving_image_or = moving_image_or[..., np.newaxis] # add channel dim
|
231 |
+
debug_save_image(fixed_image_or, 'img_0_loaded_fix_image', args.outputdir, args.debug)
|
232 |
+
debug_save_image(moving_image_or, 'img_0_loaded_moving_image', args.outputdir, args.debug)
|
233 |
|
234 |
# TF stuff
|
235 |
+
logger.info('Setting up configuration')
|
236 |
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
|
237 |
config.gpu_options.allow_growth = True
|
238 |
config.log_device_placement = False ## to log device placement (on which device the operation ran)
|
|
|
242 |
tf.compat.v1.keras.backend.set_session(sess)
|
243 |
|
244 |
# Preprocess data
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
# 1. Run Livermask to get the mask around the liver in both the fixed and moving image
|
246 |
+
logger.info('Getting ROI')
|
247 |
+
fixed_segm_bbox = get_roi(args.fixed, args.anatomy, args.outputdir,
|
248 |
+
'fixed_segmentation', args.fixedsegm, args.debug)
|
249 |
+
moving_segm_bbox = get_roi(args.moving, args.anatomy, args.outputdir,
|
250 |
+
'moving_segmentation', args.movingsegm, args.debug)
|
251 |
+
|
252 |
+
crop_min = np.amin(np.vstack([fixed_segm_bbox[:3], moving_segm_bbox[:3]]), axis=0)
|
253 |
+
crop_max = np.amax(np.vstack([fixed_segm_bbox[3:], moving_segm_bbox[3:]]), axis=0)
|
254 |
+
|
255 |
+
# 2.2 Crop the fixed and moving images using such boxes
|
256 |
+
fixed_image = fixed_image_or[crop_min[0]: crop_max[0],
|
257 |
+
crop_min[1]: crop_max[1],
|
258 |
+
crop_min[2]: crop_max[2], ...]
|
259 |
+
debug_save_image(fixed_image, 'img_2_cropped_fixed_image', args.outputdir, args.debug)
|
260 |
+
|
261 |
+
moving_image = moving_image_or[crop_min[0]: crop_max[0],
|
262 |
+
crop_min[1]: crop_max[1],
|
263 |
+
crop_min[2]: crop_max[2], ...]
|
264 |
+
debug_save_image(moving_image, 'img_2_cropped_moving_image', args.outputdir, args.debug)
|
265 |
+
|
266 |
+
image_shape_crop = fixed_image.shape
|
267 |
+
# 2.3 Resize the images to the expected input size
|
268 |
+
zoom_factors = IMAGE_INTPUT_SHAPE / image_shape_crop
|
269 |
+
fixed_image = zoom(fixed_image, zoom_factors)
|
270 |
+
moving_image = zoom(moving_image, zoom_factors)
|
271 |
+
fixed_image = min_max_norm(fixed_image)
|
272 |
+
moving_image = min_max_norm(moving_image)
|
273 |
+
debug_save_image(fixed_image, 'img_3_preproc_fixed_image', args.outputdir, args.debug)
|
274 |
+
debug_save_image(moving_image, 'img_3_preproc_moving_image', args.outputdir, args.debug)
|
275 |
|
276 |
# 3. Build the whole graph
|
277 |
+
logger.info('Building TF graph')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
### METRICS GRAPH ###
|
279 |
+
fix_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='fix_img')
|
280 |
+
pred_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='pred_img')
|
281 |
+
|
282 |
+
ssim_tf = StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric(fix_img_ph, pred_img_ph)
|
283 |
+
ncc_tf = NCC(image_shape_or).metric(fix_img_ph, pred_img_ph)
|
284 |
+
mse_tf = vxm.losses.MSE().loss(fix_img_ph, pred_img_ph)
|
285 |
+
ms_ssim_tf = MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric(fix_img_ph, pred_img_ph)
|
286 |
+
|
287 |
+
logger.info(f'Using model: {"Brain" if args.anatomy == "B" else "Liver"} -> {args.model}')
|
288 |
+
MODEL_FILE = MODELS_FILE[args.anatomy][args.model]
|
289 |
+
|
290 |
+
# try:
|
291 |
+
# network = tf.keras.models.load_model(MODEL_FILE,
|
292 |
+
# {'VxmDense': vxm.networks.VxmDense,
|
293 |
+
# # 'VxmDenseSemiSupervisedSeg': vxm.networks.VxmDenseSemiSupervisedSeg,
|
294 |
+
# 'AdamAccumulated': AdamAccumulated
|
295 |
+
# },
|
296 |
+
# compile=False)
|
297 |
+
# except ValueError as e:
|
298 |
+
# enc_features = [32, 64, 128, 256, 512, 1024] # const.ENCODER_FILTERS
|
299 |
+
# dec_features = enc_features[::-1] + [16, 16] # const.ENCODER_FILTERS[::-1]
|
300 |
+
# nb_features = [enc_features, dec_features]
|
301 |
+
# if re.search('^UW|SEGGUIDED_', MODEL_FILE):
|
302 |
+
# network = vxm.networks.VxmDense(inshape=IMAGE_INTPUT_SHAPE[:-1],
|
303 |
+
# nb_unet_features=nb_features,
|
304 |
+
# int_steps=0,
|
305 |
+
# int_downsize=1,
|
306 |
+
# seg_downsize=1)
|
307 |
+
# else:
|
308 |
+
# network = vxm.networks.VxmDense(inshape=IMAGE_INTPUT_SHAPE[:-1],
|
309 |
+
# nb_unet_features=nb_features,
|
310 |
+
# int_steps=0)
|
311 |
+
# network.load_weights(MODEL_FILE, by_name=True)
|
312 |
+
|
313 |
+
enc_features = [32, 64, 128, 256, 512, 1024] # const.ENCODER_FILTERS
|
314 |
+
dec_features = enc_features[::-1] + [16, 16] # const.ENCODER_FILTERS[::-1]
|
315 |
+
nb_features = [enc_features, dec_features]
|
316 |
+
network = vxm.networks.VxmDense(inshape=IMAGE_INTPUT_SHAPE[:-1],
|
317 |
+
nb_unet_features=nb_features,
|
318 |
+
int_steps=0)
|
319 |
+
network.load_weights(MODEL_FILE, by_name=True)
|
320 |
+
network.trainable = False
|
321 |
+
|
322 |
+
registration_model = network.get_registration_model()
|
323 |
+
deb_model = network.apply_transform
|
324 |
+
|
325 |
+
logger.info('Performing registration')
|
326 |
+
with sess.as_default():
|
327 |
+
if args.debug:
|
328 |
+
registration_model.summary(line_length=C.SUMMARY_LINE_LENGTH)
|
329 |
+
time_disp_map_start = time.time()
|
330 |
+
# disp_map = registration_model.predict([moving_image[np.newaxis, ...], fixed_image[np.newaxis, ...]])
|
331 |
+
p, disp_map = network.predict([moving_image[np.newaxis, ...], fixed_image[np.newaxis, ...]])
|
332 |
+
time_disp_map_end = time.time()
|
333 |
+
debug_save_image(np.squeeze(disp_map), 'disp_map_0_raw', args.outputdir, args.debug)
|
334 |
+
debug_save_image(p[0, ...], 'img_4_net_pred_image', args.outputdir, args.debug)
|
335 |
+
# pred_image = min_max_norm(pred_image)
|
336 |
+
# pred_image_isot = zoom(pred_image[0, ...], zoom_factors, order=3)[np.newaxis, ...]
|
337 |
+
# fixed_image_isot = zoom(fixed_image[0, ...], zoom_factors, order=3)[np.newaxis, ...]
|
338 |
+
|
339 |
+
# Up sample the displacement map to the full res
|
340 |
+
trf = np.eye(4)
|
341 |
+
np.fill_diagonal(trf, 1/zoom_factors)
|
342 |
+
disp_map = resize_displacement_map(np.squeeze(disp_map), None, trf)
|
343 |
+
debug_save_image(np.squeeze(disp_map), 'disp_map_1_upsampled', args.outputdir, args.debug)
|
344 |
+
disp_map_or = pad_displacement_map(disp_map, crop_min, crop_max, image_shape_or)
|
345 |
+
debug_save_image(np.squeeze(disp_map_or), 'disp_map_2_padded', args.outputdir, args.debug)
|
346 |
+
disp_map_or = gaussian_filter(disp_map_or, 5)
|
347 |
+
debug_save_image(np.squeeze(disp_map_or), 'disp_map_3_smoothed', args.outputdir, args.debug)
|
348 |
+
|
349 |
+
time_pred_img_start = time.time()
|
350 |
+
pred_image = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([moving_image_or[np.newaxis, ...], disp_map_or[np.newaxis, ...]]).eval()
|
351 |
+
time_pred_img_end = time.time()
|
352 |
+
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
|
353 |
+
{'fix_img:0': fixed_image_or[np.newaxis, ...], 'pred_img:0': pred_image})
|
354 |
+
ssim = np.mean(ssim)
|
355 |
+
ms_ssim = ms_ssim[0]
|
356 |
+
pred_image = pred_image[0, ...]
|
357 |
+
|
358 |
+
save_nifti(pred_image, os.path.join(args.outputdir, 'pred_image.nii.gz'))
|
359 |
+
np.savez_compressed(os.path.join(args.outputdir, 'displacement_map.npz'), disp_map_or)
|
360 |
+
logger.info('Predicted image (full image) and displacement map saved in: '.format(args.outputdir))
|
361 |
+
logger.info(f'Displacement map prediction time: {time_disp_map_end - time_disp_map_start} s')
|
362 |
+
logger.info(f'Predicted image time: {time_pred_img_end - time_pred_img_start} s')
|
363 |
+
|
364 |
+
logger.info('Similarity metrics (Full image)\n------------------')
|
365 |
+
logger.info('SSIM: {:.03f}'.format(ssim))
|
366 |
+
logger.info('NCC: {:.03f}'.format(ncc))
|
367 |
+
logger.info('MSE: {:.03f}'.format(mse))
|
368 |
+
logger.info('MS SSIM: {:.03f}'.format(ms_ssim))
|
369 |
+
|
370 |
+
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
|
371 |
+
{'fix_img:0': fixed_image[np.newaxis, ...], 'pred_img:0': p})
|
372 |
+
ssim = np.mean(ssim)
|
373 |
+
ms_ssim = ms_ssim[0]
|
374 |
+
logger.info('\nSimilarity metrics (ROI)\n------------------')
|
375 |
+
logger.info('SSIM: {:.03f}'.format(ssim))
|
376 |
+
logger.info('NCC: {:.03f}'.format(ncc))
|
377 |
+
logger.info('MSE: {:.03f}'.format(mse))
|
378 |
+
logger.info('MS SSIM: {:.03f}'.format(ms_ssim))
|
379 |
+
|
380 |
+
del registration_model
|
381 |
+
logger.info('Done')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|