Commit
·
15c9383
1
Parent(s):
99b6efe
Refactoring
Browse filesImproved image generation
- Brain_study/ABSTRACT/figures.py +80 -32
Brain_study/ABSTRACT/figures.py
CHANGED
@@ -7,22 +7,74 @@ import nibabel as nib
|
|
7 |
import numpy as np
|
8 |
import matplotlib.pyplot as plt
|
9 |
from matplotlib import cm
|
10 |
-
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
|
|
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
segm_cm[0, :] = np.asarray([0, 0, 0, 0])
|
15 |
segm_cm = ListedColormap(segm_cm)
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
if __name__ == '__main__':
|
18 |
parser = argparse.ArgumentParser()
|
19 |
|
20 |
parser.add_argument('-d', '--dir', type=str, help='Directories where the models are stored', default=None)
|
21 |
parser.add_argument('-o', '--output', type=str, help='Output directory', default=os.getcwd())
|
22 |
parser.add_argument('--overwrite', type=bool, default=True)
|
|
|
|
|
23 |
args = parser.parse_args()
|
24 |
assert args.dir is not None, "No directories provided. Stopping"
|
25 |
-
|
26 |
list_fix_img = list()
|
27 |
list_mov_img = list()
|
28 |
list_fix_seg = list()
|
@@ -30,10 +82,12 @@ if __name__ == '__main__':
|
|
30 |
list_pred_img = list()
|
31 |
list_pred_seg = list()
|
32 |
print('Fetching data...')
|
|
|
33 |
for r, d, f in os.walk(args.dir):
|
34 |
-
|
|
|
35 |
for name in f:
|
36 |
-
if re.search('^
|
37 |
if re.search('fix_img', name) and name.endswith('nii.gz'):
|
38 |
list_fix_img.append(os.path.join(r, name))
|
39 |
elif re.search('mov_img', name):
|
@@ -58,16 +112,16 @@ if __name__ == '__main__':
|
|
58 |
list_pred_img.sort()
|
59 |
list_pred_seg.sort()
|
60 |
print('Making Test_data.png...')
|
61 |
-
selected_slice =
|
62 |
-
fix_img = np.asarray(nib.load(list_fix_img[0]).dataobj)[
|
63 |
-
mov_img = np.asarray(nib.load(list_mov_img[0]).dataobj)[
|
64 |
-
fix_seg =
|
65 |
-
mov_seg =
|
66 |
|
67 |
fig, ax = plt.subplots(nrows=1, ncols=4, figsize=(9, 3), dpi=200)
|
68 |
|
69 |
for i, (img, title) in enumerate(zip([(fix_img, fix_seg), (mov_img, mov_seg)],
|
70 |
-
[('Fixed image', 'Fixed
|
71 |
|
72 |
ax[i].imshow(img[0], origin='lower', cmap='Greys_r')
|
73 |
ax[i+2].imshow(img[0], origin='lower', cmap='Greys_r')
|
@@ -84,14 +138,16 @@ if __name__ == '__main__':
|
|
84 |
warnings.warn('File Test_data.png already exists. Skipping')
|
85 |
else:
|
86 |
plt.savefig(os.path.join(args.output, 'Test_data.png'), format='png')
|
|
|
|
|
87 |
plt.close()
|
88 |
|
89 |
print('Making Pred_data.png...')
|
90 |
-
fig, ax = plt.subplots(nrows=2, ncols=
|
91 |
|
92 |
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)):
|
93 |
-
img = np.asarray(nib.load(pred_img_path).dataobj)[
|
94 |
-
seg =
|
95 |
|
96 |
ax[0, i].imshow(img, origin='lower', cmap='Greys_r')
|
97 |
ax[1, i].imshow(img, origin='lower', cmap='Greys_r')
|
@@ -100,13 +156,7 @@ if __name__ == '__main__':
|
|
100 |
ax[0, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
|
101 |
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
|
102 |
|
103 |
-
model =
|
104 |
-
model = model.replace('_Lsim', ' ')
|
105 |
-
model = model.replace('_Lseg', ' ')
|
106 |
-
model = model.replace('_L', ' ')
|
107 |
-
model = model.replace('_', ' ')
|
108 |
-
model = model.upper()
|
109 |
-
model = ' '.join(model.split())
|
110 |
|
111 |
ax[1, i].set_xlabel(model, fontsize=9)
|
112 |
plt.tight_layout()
|
@@ -114,18 +164,20 @@ if __name__ == '__main__':
|
|
114 |
warnings.warn('File Pred_data.png already exists. Skipping')
|
115 |
else:
|
116 |
plt.savefig(os.path.join(args.output, 'Pred_data.png'), format='png')
|
|
|
|
|
117 |
plt.close()
|
118 |
|
119 |
print('Making Pred_data_large.png...')
|
120 |
-
fig, ax = plt.subplots(nrows=2, ncols=
|
121 |
list_pred_img = [list_mov_img[0]] + list_pred_img
|
122 |
list_pred_img = [list_fix_img[0]] + list_pred_img
|
123 |
list_pred_seg = [list_mov_seg[0]] + list_pred_seg
|
124 |
list_pred_seg = [list_fix_seg[0]] + list_pred_seg
|
125 |
|
126 |
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)):
|
127 |
-
img = np.asarray(nib.load(pred_img_path).dataobj)[
|
128 |
-
seg =
|
129 |
|
130 |
ax[0, i].imshow(img, origin='lower', cmap='Greys_r')
|
131 |
ax[1, i].imshow(img, origin='lower', cmap='Greys_r')
|
@@ -135,13 +187,7 @@ if __name__ == '__main__':
|
|
135 |
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
|
136 |
|
137 |
if i > 1:
|
138 |
-
model =
|
139 |
-
model = model.replace('_Lsim', ' ')
|
140 |
-
model = model.replace('_Lseg', ' ')
|
141 |
-
model = model.replace('_L', ' ')
|
142 |
-
model = model.replace('_', ' ')
|
143 |
-
model = model.upper()
|
144 |
-
model = ' '.join(model.split())
|
145 |
elif i == 0:
|
146 |
model = 'Moving image'
|
147 |
else:
|
@@ -153,6 +199,8 @@ if __name__ == '__main__':
|
|
153 |
warnings.warn('File Pred_data.png already exists. Skipping')
|
154 |
else:
|
155 |
plt.savefig(os.path.join(args.output, 'Pred_data_large.png'), format='png')
|
|
|
|
|
156 |
plt.close()
|
157 |
|
158 |
print('...done!')
|
|
|
7 |
import numpy as np
|
8 |
import matplotlib.pyplot as plt
|
9 |
from matplotlib import cm
|
10 |
+
from matplotlib.colors import ListedColormap, LinearSegmentedColormap, to_rgba, CSS4_COLORS
|
11 |
+
import tikzplotlib
|
12 |
|
13 |
+
from DeepDeformationMapRegistration.utils.misc import segmentation_ohe_to_cardinal
|
14 |
+
|
15 |
+
# segm_cm = np.asarray([to_rgba(CSS4_COLORS[c], 1) for c in CSS4_COLORS.keys()])
|
16 |
+
# # segm_cm.sort()
|
17 |
+
# segm_cm = segm_cm[np.linspace(0, len(segm_cm), 4, endpoint=False).astype(int), ...]
|
18 |
+
segm_cm = cm.get_cmap('jet').reversed()
|
19 |
+
segm_cm = segm_cm(np.linspace(0, 1, 30))
|
20 |
segm_cm[0, :] = np.asarray([0, 0, 0, 0])
|
21 |
segm_cm = ListedColormap(segm_cm)
|
22 |
|
23 |
+
DICT_MODEL_NAMES = {'BASELINE': 'BL',
|
24 |
+
'SEGGUIDED': 'SG',
|
25 |
+
'UW': 'UW'}
|
26 |
+
|
27 |
+
DICT_METRICS_NAMES = {'NCC': 'N',
|
28 |
+
'SSIM': 'S',
|
29 |
+
'DICE': 'D',
|
30 |
+
'DICE_MACRO': 'D',
|
31 |
+
'HD': 'H', }
|
32 |
+
|
33 |
+
|
34 |
+
def get_model_name(in_path: str):
|
35 |
+
model = re.search('((UW|SEGGUIDED|BASELINE).*)_\d+-\d+', in_path)
|
36 |
+
if model:
|
37 |
+
model = model.group(1).rstrip('_')
|
38 |
+
model = model.replace('_Lsim', '')
|
39 |
+
model = model.replace('_Lseg', '')
|
40 |
+
model = model.replace('_L', '')
|
41 |
+
model = model.replace('_', ' ')
|
42 |
+
model = model.upper()
|
43 |
+
elements = model.split()
|
44 |
+
model = elements[0]
|
45 |
+
metrics = list()
|
46 |
+
model = DICT_MODEL_NAMES[model]
|
47 |
+
for m in elements[1:]:
|
48 |
+
if m != 'MACRO':
|
49 |
+
metrics.append(DICT_METRICS_NAMES[m])
|
50 |
+
|
51 |
+
return '{}-{}'.format(model, ''.join(metrics))
|
52 |
+
else:
|
53 |
+
try:
|
54 |
+
model = re.search('(SyNCC|SyN)', in_path).group(1)
|
55 |
+
except AttributeError:
|
56 |
+
raise ValueError('Unknown folder name/model: '+ in_path)
|
57 |
+
return model
|
58 |
+
|
59 |
+
|
60 |
+
def load_segmentation(file_path) -> np.ndarray:
|
61 |
+
segm = np.asarray(nib.load(file_path).dataobj)
|
62 |
+
if segm.shape[-1] > 1:
|
63 |
+
segm = segmentation_ohe_to_cardinal(segm)
|
64 |
+
return segm
|
65 |
+
|
66 |
+
|
67 |
if __name__ == '__main__':
|
68 |
parser = argparse.ArgumentParser()
|
69 |
|
70 |
parser.add_argument('-d', '--dir', type=str, help='Directories where the models are stored', default=None)
|
71 |
parser.add_argument('-o', '--output', type=str, help='Output directory', default=os.getcwd())
|
72 |
parser.add_argument('--overwrite', type=bool, default=True)
|
73 |
+
parser.add_argument('--fileno', type=int, default=2)
|
74 |
+
parser.add_argument('--tikz', type=bool, default=False)
|
75 |
args = parser.parse_args()
|
76 |
assert args.dir is not None, "No directories provided. Stopping"
|
77 |
+
os.makedirs(args.output, exist_ok=True)
|
78 |
list_fix_img = list()
|
79 |
list_mov_img = list()
|
80 |
list_fix_seg = list()
|
|
|
82 |
list_pred_img = list()
|
83 |
list_pred_seg = list()
|
84 |
print('Fetching data...')
|
85 |
+
init_lvl = args.dir.count(os.sep)
|
86 |
for r, d, f in os.walk(args.dir):
|
87 |
+
current_lvl = r.count(os.sep) - init_lvl
|
88 |
+
if current_lvl < 3:
|
89 |
for name in f:
|
90 |
+
if re.search('^{:03d}'.format(args.fileno), name) and name.endswith('nii.gz'):
|
91 |
if re.search('fix_img', name) and name.endswith('nii.gz'):
|
92 |
list_fix_img.append(os.path.join(r, name))
|
93 |
elif re.search('mov_img', name):
|
|
|
112 |
list_pred_img.sort()
|
113 |
list_pred_seg.sort()
|
114 |
print('Making Test_data.png...')
|
115 |
+
selected_slice = 64
|
116 |
+
fix_img = np.asarray(nib.load(list_fix_img[0]).dataobj)[selected_slice, ..., 0].T
|
117 |
+
mov_img = np.asarray(nib.load(list_mov_img[0]).dataobj)[selected_slice, ..., 0].T
|
118 |
+
fix_seg = load_segmentation(list_fix_seg[0])[selected_slice, ..., 0].T
|
119 |
+
mov_seg = load_segmentation(list_mov_seg[0])[selected_slice, ..., 0].T
|
120 |
|
121 |
fig, ax = plt.subplots(nrows=1, ncols=4, figsize=(9, 3), dpi=200)
|
122 |
|
123 |
for i, (img, title) in enumerate(zip([(fix_img, fix_seg), (mov_img, mov_seg)],
|
124 |
+
[('Fixed image', 'Fixed segms.'), ('Moving image', 'Moving segms.')])):
|
125 |
|
126 |
ax[i].imshow(img[0], origin='lower', cmap='Greys_r')
|
127 |
ax[i+2].imshow(img[0], origin='lower', cmap='Greys_r')
|
|
|
138 |
warnings.warn('File Test_data.png already exists. Skipping')
|
139 |
else:
|
140 |
plt.savefig(os.path.join(args.output, 'Test_data.png'), format='png')
|
141 |
+
if args.tikz:
|
142 |
+
tikzplotlib.save(os.path.join(args.output, 'Test_data.tex'))
|
143 |
plt.close()
|
144 |
|
145 |
print('Making Pred_data.png...')
|
146 |
+
fig, ax = plt.subplots(nrows=2, ncols=len(list_pred_img), figsize=(9, 3), dpi=200)
|
147 |
|
148 |
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)):
|
149 |
+
img = np.asarray(nib.load(pred_img_path).dataobj)[selected_slice, ..., 0].T
|
150 |
+
seg = load_segmentation(pred_seg_path)[selected_slice, ..., 0].T
|
151 |
|
152 |
ax[0, i].imshow(img, origin='lower', cmap='Greys_r')
|
153 |
ax[1, i].imshow(img, origin='lower', cmap='Greys_r')
|
|
|
156 |
ax[0, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
|
157 |
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
|
158 |
|
159 |
+
model = get_model_name(pred_img_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
ax[1, i].set_xlabel(model, fontsize=9)
|
162 |
plt.tight_layout()
|
|
|
164 |
warnings.warn('File Pred_data.png already exists. Skipping')
|
165 |
else:
|
166 |
plt.savefig(os.path.join(args.output, 'Pred_data.png'), format='png')
|
167 |
+
if args.tikz:
|
168 |
+
tikzplotlib.save(os.path.join(args.output, 'Pred_data.tex'))
|
169 |
plt.close()
|
170 |
|
171 |
print('Making Pred_data_large.png...')
|
172 |
+
fig, ax = plt.subplots(nrows=2, ncols=len(list_pred_img) + 2, figsize=(9, 3), dpi=200)
|
173 |
list_pred_img = [list_mov_img[0]] + list_pred_img
|
174 |
list_pred_img = [list_fix_img[0]] + list_pred_img
|
175 |
list_pred_seg = [list_mov_seg[0]] + list_pred_seg
|
176 |
list_pred_seg = [list_fix_seg[0]] + list_pred_seg
|
177 |
|
178 |
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)):
|
179 |
+
img = np.asarray(nib.load(pred_img_path).dataobj)[selected_slice, ..., 0].T
|
180 |
+
seg = load_segmentation(pred_seg_path)[selected_slice, ..., 0].T
|
181 |
|
182 |
ax[0, i].imshow(img, origin='lower', cmap='Greys_r')
|
183 |
ax[1, i].imshow(img, origin='lower', cmap='Greys_r')
|
|
|
187 |
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
|
188 |
|
189 |
if i > 1:
|
190 |
+
model = get_model_name(pred_img_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
elif i == 0:
|
192 |
model = 'Moving image'
|
193 |
else:
|
|
|
199 |
warnings.warn('File Pred_data.png already exists. Skipping')
|
200 |
else:
|
201 |
plt.savefig(os.path.join(args.output, 'Pred_data_large.png'), format='png')
|
202 |
+
if args.tikz:
|
203 |
+
tikzplotlib.save(os.path.join(args.output, 'Pred_data_large.png'))
|
204 |
plt.close()
|
205 |
|
206 |
print('...done!')
|