Commit
·
3b554c2
1
Parent(s):
67a11d3
Updated train scripts
Browse files
Brain_study/MultiTrain_config.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, sys
|
| 2 |
+
currentdir = os.path.dirname(os.path.realpath(__file__))
|
| 3 |
+
parentdir = os.path.dirname(currentdir)
|
| 4 |
+
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
|
| 5 |
+
|
| 6 |
+
import argparse
|
| 7 |
+
from configparser import ConfigParser
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
|
| 10 |
+
import DeepDeformationMapRegistration.utils.constants as C
|
| 11 |
+
|
| 12 |
+
TRAIN_DATASET = '/mnt/EncryptedData1/Users/javier/ext_datasets/IXI_dataset/T1/training'
|
| 13 |
+
|
| 14 |
+
err = list()
|
| 15 |
+
|
| 16 |
+
if __name__ == '__main__':
|
| 17 |
+
parser = argparse.ArgumentParser()
|
| 18 |
+
parser.add_argument('--ini', help='Configuration file')
|
| 19 |
+
args = parser.parse_args()
|
| 20 |
+
|
| 21 |
+
configFile = ConfigParser()
|
| 22 |
+
configFile.read(args.ini)
|
| 23 |
+
print('Loaded configuration file: ' + args.ini)
|
| 24 |
+
print({section: dict(configFile[section]) for section in configFile.sections()})
|
| 25 |
+
print('\n\n')
|
| 26 |
+
|
| 27 |
+
trainConfig = configFile['TRAIN']
|
| 28 |
+
lossesConfig = configFile['LOSSES']
|
| 29 |
+
datasetConfig = configFile['DATASETS']
|
| 30 |
+
othersConfig = configFile['OTHERS']
|
| 31 |
+
augmentationConfig = configFile['AUGMENTATION']
|
| 32 |
+
|
| 33 |
+
simil = lossesConfig['similarity'].split(',')
|
| 34 |
+
segm = lossesConfig['segmentation'].split(',')
|
| 35 |
+
if trainConfig['name'].lower() == 'uw':
|
| 36 |
+
from Brain_study.Train_UncertaintyWeighted import launch_train
|
| 37 |
+
loss_config = {'simil': simil, 'segm': segm}
|
| 38 |
+
elif trainConfig['name'].lower() == 'segguided':
|
| 39 |
+
from Brain_study.Train_SegmentationGuided import launch_train
|
| 40 |
+
loss_config = {'simil': simil[0], 'segm': segm[0]}
|
| 41 |
+
else:
|
| 42 |
+
from Brain_study.Train_Baseline import launch_train
|
| 43 |
+
loss_config = {'simil': simil[0]}
|
| 44 |
+
|
| 45 |
+
output_folder = os.path.join(othersConfig['outputFolder'],
|
| 46 |
+
'{}_Lsim_{}__Lseg_{}'.format(trainConfig['name'], '_'.join(simil), '_'.join(segm)))
|
| 47 |
+
output_folder = output_folder + '_' + datetime.now().strftime("%H%M%S-%d%m%Y")
|
| 48 |
+
|
| 49 |
+
print('TRAIN ' + datasetConfig['train'])
|
| 50 |
+
|
| 51 |
+
if augmentationConfig:
|
| 52 |
+
C.GAMMA_AUGMENTATION = augmentationConfig['gamma'].lower() == 'true'
|
| 53 |
+
C.BRIGHTNESS_AUGMENTATION = augmentationConfig['brightness'].lower() == 'true'
|
| 54 |
+
|
| 55 |
+
try:
|
| 56 |
+
unet = [int(x) for x in trainConfig['unet'].split(',')]
|
| 57 |
+
except KeyError as e:
|
| 58 |
+
unet = [16, 32, 64, 128, 256]
|
| 59 |
+
|
| 60 |
+
try:
|
| 61 |
+
head = [int(x) for x in trainConfig['head'].split(',')]
|
| 62 |
+
except KeyError as e:
|
| 63 |
+
head = [16, 16]
|
| 64 |
+
|
| 65 |
+
launch_train(dataset_folder=datasetConfig['train'],
|
| 66 |
+
validation_folder=datasetConfig['validation'],
|
| 67 |
+
output_folder=output_folder,
|
| 68 |
+
gpu_num=eval(trainConfig['gpu']),
|
| 69 |
+
lr=eval(trainConfig['learningRate']),
|
| 70 |
+
rw=eval(trainConfig['regularizationWeight']),
|
| 71 |
+
acc_gradients=eval(trainConfig['accumulativeGradients']),
|
| 72 |
+
batch_size=eval(trainConfig['batchSize']),
|
| 73 |
+
max_epochs=eval(trainConfig['epochs']),
|
| 74 |
+
image_size=eval(trainConfig['imageSize']),
|
| 75 |
+
early_stop_patience=eval(trainConfig['earlyStopPatience']),
|
| 76 |
+
unet=unet,
|
| 77 |
+
head=head,
|
| 78 |
+
**loss_config)
|
Brain_study/Train_Baseline.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import os, sys
|
|
|
|
|
|
|
| 2 |
currentdir = os.path.dirname(os.path.realpath(__file__))
|
| 3 |
parentdir = os.path.dirname(currentdir)
|
| 4 |
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
|
|
@@ -32,25 +34,30 @@ from tqdm import tqdm
|
|
| 32 |
from datetime import datetime
|
| 33 |
|
| 34 |
|
| 35 |
-
def launch_train(dataset_folder, validation_folder, output_folder, gpu_num=0, lr=1e-4, rw=5e-3, simil='ssim'
|
|
|
|
|
|
|
| 36 |
assert dataset_folder is not None and output_folder is not None
|
| 37 |
|
| 38 |
os.environ['CUDA_DEVICE_ORDER'] = C.DEV_ORDER
|
| 39 |
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_num) # Check availability before running using 'nvidia-smi'
|
| 40 |
C.GPU_NUM = str(gpu_num)
|
| 41 |
|
|
|
|
|
|
|
|
|
|
| 42 |
output_folder = os.path.join(output_folder + '_' + datetime.now().strftime("%H%M%S-%d%m%Y"))
|
| 43 |
os.makedirs(output_folder, exist_ok=True)
|
| 44 |
# dataset_copy = DatasetCopy(dataset_folder, os.path.join(output_folder, 'temp'))
|
| 45 |
log_file = open(os.path.join(output_folder, 'log.txt'), 'w')
|
| 46 |
C.TRAINING_DATASET = dataset_folder #dataset_copy.copy_dataset()
|
| 47 |
C.VALIDATION_DATASET = validation_folder
|
| 48 |
-
C.ACCUM_GRADIENT_STEP =
|
| 49 |
-
C.BATCH_SIZE =
|
| 50 |
-
C.EARLY_STOP_PATIENCE =
|
| 51 |
C.LEARNING_RATE = lr
|
| 52 |
C.LIMIT_NUM_SAMPLES = None
|
| 53 |
-
C.EPOCHS =
|
| 54 |
|
| 55 |
aux = "[{}]\tINFO:\nTRAIN DATASET: {}\nVALIDATION DATASET: {}\n" \
|
| 56 |
"GPU: {}\n" \
|
|
@@ -84,7 +91,7 @@ def launch_train(dataset_folder, validation_folder, output_folder, gpu_num=0, lr
|
|
| 84 |
validation_generator = data_generator.get_validation_generator()
|
| 85 |
|
| 86 |
image_input_shape = train_generator.get_data_shape()[-1][:-1]
|
| 87 |
-
image_output_shape = [
|
| 88 |
|
| 89 |
# Config the training sessions
|
| 90 |
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
|
|
@@ -125,13 +132,15 @@ def launch_train(dataset_folder, validation_folder, output_folder, gpu_num=0, lr
|
|
| 125 |
augm_model_valid = Model(inputs=input_layer_valid, outputs=augm_layer_valid(input_layer_valid))
|
| 126 |
|
| 127 |
# Build model
|
| 128 |
-
enc_features = [16, 32, 32, 32] # const.ENCODER_FILTERS
|
| 129 |
-
dec_features = [32, 32, 32, 32, 32, 16, 16] # const.ENCODER_FILTERS[::-1]
|
|
|
|
|
|
|
| 130 |
nb_features = [enc_features, dec_features]
|
| 131 |
network = vxm.networks.VxmDense(inshape=image_output_shape,
|
| 132 |
nb_unet_features=nb_features,
|
| 133 |
int_steps=0)
|
| 134 |
-
|
| 135 |
# Losses and loss weights
|
| 136 |
SSIM_KER_SIZE = 5
|
| 137 |
MS_SSIM_WEIGHTS = _MSSSIM_WEIGHTS[:3]
|
|
|
|
| 1 |
import os, sys
|
| 2 |
+
import warnings
|
| 3 |
+
|
| 4 |
currentdir = os.path.dirname(os.path.realpath(__file__))
|
| 5 |
parentdir = os.path.dirname(currentdir)
|
| 6 |
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
|
|
|
|
| 34 |
from datetime import datetime
|
| 35 |
|
| 36 |
|
| 37 |
+
def launch_train(dataset_folder, validation_folder, output_folder, gpu_num=0, lr=1e-4, rw=5e-3, simil='ssim',
|
| 38 |
+
acc_gradients=16, batch_size=1, max_epochs=10000, early_stop_patience=1000, image_size=64,
|
| 39 |
+
unet=[16, 32, 64, 128, 256], head=[16, 16]):
|
| 40 |
assert dataset_folder is not None and output_folder is not None
|
| 41 |
|
| 42 |
os.environ['CUDA_DEVICE_ORDER'] = C.DEV_ORDER
|
| 43 |
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_num) # Check availability before running using 'nvidia-smi'
|
| 44 |
C.GPU_NUM = str(gpu_num)
|
| 45 |
|
| 46 |
+
if batch_size != 1 and acc_gradients != 1:
|
| 47 |
+
warnings.warn('WARNING: Batch size and Accumulative gradient step are set!')
|
| 48 |
+
|
| 49 |
output_folder = os.path.join(output_folder + '_' + datetime.now().strftime("%H%M%S-%d%m%Y"))
|
| 50 |
os.makedirs(output_folder, exist_ok=True)
|
| 51 |
# dataset_copy = DatasetCopy(dataset_folder, os.path.join(output_folder, 'temp'))
|
| 52 |
log_file = open(os.path.join(output_folder, 'log.txt'), 'w')
|
| 53 |
C.TRAINING_DATASET = dataset_folder #dataset_copy.copy_dataset()
|
| 54 |
C.VALIDATION_DATASET = validation_folder
|
| 55 |
+
C.ACCUM_GRADIENT_STEP = acc_gradients
|
| 56 |
+
C.BATCH_SIZE = batch_size if C.ACCUM_GRADIENT_STEP == 1 else 1
|
| 57 |
+
C.EARLY_STOP_PATIENCE = early_stop_patience
|
| 58 |
C.LEARNING_RATE = lr
|
| 59 |
C.LIMIT_NUM_SAMPLES = None
|
| 60 |
+
C.EPOCHS = max_epochs
|
| 61 |
|
| 62 |
aux = "[{}]\tINFO:\nTRAIN DATASET: {}\nVALIDATION DATASET: {}\n" \
|
| 63 |
"GPU: {}\n" \
|
|
|
|
| 91 |
validation_generator = data_generator.get_validation_generator()
|
| 92 |
|
| 93 |
image_input_shape = train_generator.get_data_shape()[-1][:-1]
|
| 94 |
+
image_output_shape = [image_size] * 3
|
| 95 |
|
| 96 |
# Config the training sessions
|
| 97 |
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
|
|
|
|
| 132 |
augm_model_valid = Model(inputs=input_layer_valid, outputs=augm_layer_valid(input_layer_valid))
|
| 133 |
|
| 134 |
# Build model
|
| 135 |
+
# enc_features = [16, 32, 32, 32] # const.ENCODER_FILTERS
|
| 136 |
+
# dec_features = [32, 32, 32, 32, 32, 16, 16] # const.ENCODER_FILTERS[::-1]
|
| 137 |
+
enc_features = unet # const.ENCODER_FILTERS
|
| 138 |
+
dec_features = enc_features[::-1] + head # const.ENCODER_FILTERS[::-1]
|
| 139 |
nb_features = [enc_features, dec_features]
|
| 140 |
network = vxm.networks.VxmDense(inshape=image_output_shape,
|
| 141 |
nb_unet_features=nb_features,
|
| 142 |
int_steps=0)
|
| 143 |
+
network.summary(line_length=150)
|
| 144 |
# Losses and loss weights
|
| 145 |
SSIM_KER_SIZE = 5
|
| 146 |
MS_SSIM_WEIGHTS = _MSSSIM_WEIGHTS[:3]
|
Brain_study/Train_SegmentationGuided.py
CHANGED
|
@@ -29,25 +29,32 @@ from Brain_study.data_generator import BatchGenerator
|
|
| 29 |
from Brain_study.utils import SummaryDictionary, named_logs
|
| 30 |
|
| 31 |
import time
|
|
|
|
| 32 |
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
| 34 |
assert dataset_folder is not None and output_folder is not None
|
| 35 |
|
| 36 |
os.environ['CUDA_DEVICE_ORDER'] = C.DEV_ORDER
|
| 37 |
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_num) # Check availability before running using 'nvidia-smi'
|
| 38 |
C.GPU_NUM = str(gpu_num)
|
| 39 |
|
|
|
|
|
|
|
|
|
|
| 40 |
output_folder = os.path.join(output_folder + '_' + datetime.now().strftime("%H%M%S-%d%m%Y"))
|
| 41 |
os.makedirs(output_folder, exist_ok=True)
|
| 42 |
log_file = open(os.path.join(output_folder, 'log.txt'), 'w')
|
| 43 |
C.TRAINING_DATASET = dataset_folder
|
| 44 |
C.VALIDATION_DATASET = validation_folder
|
| 45 |
-
C.ACCUM_GRADIENT_STEP =
|
| 46 |
-
C.BATCH_SIZE =
|
| 47 |
-
C.EARLY_STOP_PATIENCE =
|
| 48 |
C.LEARNING_RATE = lr
|
| 49 |
C.LIMIT_NUM_SAMPLES = None
|
| 50 |
-
C.EPOCHS =
|
| 51 |
|
| 52 |
aux = "[{}]\tINFO:\nTRAIN DATASET: {}\nVALIDATION DATASET: {}\n" \
|
| 53 |
"GPU: {}\n" \
|
|
@@ -81,7 +88,7 @@ def launch_train(dataset_folder, validation_folder, output_folder, gpu_num=0, lr
|
|
| 81 |
validation_generator = data_generator.get_validation_generator()
|
| 82 |
|
| 83 |
image_input_shape = train_generator.get_data_shape()[1][:-1]
|
| 84 |
-
image_output_shape = [
|
| 85 |
|
| 86 |
nb_labels = len(train_generator.get_segmentation_labels())
|
| 87 |
|
|
@@ -109,8 +116,10 @@ def launch_train(dataset_folder, validation_folder, output_folder, gpu_num=0, lr
|
|
| 109 |
trainable=False)
|
| 110 |
augm_model = Model(inputs=input_layer_augm, outputs=augm_layer(input_layer_augm))
|
| 111 |
|
| 112 |
-
enc_features = [16, 32, 32, 32]# const.ENCODER_FILTERS
|
| 113 |
-
dec_features = [32, 32, 32, 32, 32, 16, 16]# const.ENCODER_FILTERS[::-1]
|
|
|
|
|
|
|
| 114 |
nb_features = [enc_features, dec_features]
|
| 115 |
|
| 116 |
network = vxm.networks.VxmDenseSemiSupervisedSeg(inshape=image_output_shape,
|
|
@@ -138,7 +147,7 @@ def launch_train(dataset_folder, validation_folder, output_folder, gpu_num=0, lr
|
|
| 138 |
@function_decorator('MS_SSIM_MSE__loss')
|
| 139 |
def loss_simil(y_true, y_pred):
|
| 140 |
return MultiScaleStructuralSimilarity(max_val=1., filter_size=SSIM_KER_SIZE, power_factors=MS_SSIM_WEIGHTS).loss(y_true, y_pred) + vxm.losses.MSE().loss(y_true, y_pred)
|
| 141 |
-
elif simil=='ssim__ncc' or simil=='ncc__ssim'
|
| 142 |
@function_decorator('SSIM_NCC__loss')
|
| 143 |
def loss_simil(y_true, y_pred):
|
| 144 |
return StructuralSimilarity_simplified(patch_size=SSIM_KER_SIZE, dim=3, dynamic_range=1.).loss(y_true, y_pred) + NCC(image_input_shape).loss(y_true, y_pred)
|
|
@@ -153,6 +162,8 @@ def launch_train(dataset_folder, validation_folder, output_folder, gpu_num=0, lr
|
|
| 153 |
loss_segm = HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [nb_labels]).loss
|
| 154 |
elif segm == 'dice':
|
| 155 |
loss_segm = GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).loss
|
|
|
|
|
|
|
| 156 |
else:
|
| 157 |
raise ValueError('No valid value for segm')
|
| 158 |
|
|
@@ -163,8 +174,8 @@ def launch_train(dataset_folder, validation_folder, output_folder, gpu_num=0, lr
|
|
| 163 |
'seg_transformer': 1.,
|
| 164 |
'flow': 5e-3}
|
| 165 |
metrics = {'transformer': [vxm.losses.MSE().loss, NCC(image_input_shape).metric, MultiScaleStructuralSimilarity(max_val=1., filter_size=SSIM_KER_SIZE, power_factors=MS_SSIM_WEIGHTS).metric],
|
| 166 |
-
'seg_transformer': [GeneralizedDICEScore(image_output_shape + [train_generator.get_data_shape()[2][-1]], num_labels=nb_labels).
|
| 167 |
-
HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [train_generator.get_data_shape()[2][-1]]).metric
|
| 168 |
]}
|
| 169 |
metrics_weights = {'transformer': 1,
|
| 170 |
'seg_transformer': 1,
|
|
|
|
| 29 |
from Brain_study.utils import SummaryDictionary, named_logs
|
| 30 |
|
| 31 |
import time
|
| 32 |
+
import warnings
|
| 33 |
|
| 34 |
+
|
| 35 |
+
def launch_train(dataset_folder, validation_folder, output_folder, gpu_num=0, lr=1e-4, rw=5e-3, simil='ssim', segm='hd',
|
| 36 |
+
acc_gradients=16, batch_size=1, max_epochs=10000, early_stop_patience=1000, image_size=64,
|
| 37 |
+
unet=[16, 32, 64, 128, 256], head=[16, 16]):
|
| 38 |
assert dataset_folder is not None and output_folder is not None
|
| 39 |
|
| 40 |
os.environ['CUDA_DEVICE_ORDER'] = C.DEV_ORDER
|
| 41 |
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_num) # Check availability before running using 'nvidia-smi'
|
| 42 |
C.GPU_NUM = str(gpu_num)
|
| 43 |
|
| 44 |
+
if batch_size != 1 and acc_gradients != 1:
|
| 45 |
+
warnings.warn('WARNING: Batch size and Accumulative gradient step are set!')
|
| 46 |
+
|
| 47 |
output_folder = os.path.join(output_folder + '_' + datetime.now().strftime("%H%M%S-%d%m%Y"))
|
| 48 |
os.makedirs(output_folder, exist_ok=True)
|
| 49 |
log_file = open(os.path.join(output_folder, 'log.txt'), 'w')
|
| 50 |
C.TRAINING_DATASET = dataset_folder
|
| 51 |
C.VALIDATION_DATASET = validation_folder
|
| 52 |
+
C.ACCUM_GRADIENT_STEP = acc_gradients
|
| 53 |
+
C.BATCH_SIZE = batch_size if C.ACCUM_GRADIENT_STEP == 1 else 1
|
| 54 |
+
C.EARLY_STOP_PATIENCE = early_stop_patience
|
| 55 |
C.LEARNING_RATE = lr
|
| 56 |
C.LIMIT_NUM_SAMPLES = None
|
| 57 |
+
C.EPOCHS = max_epochs
|
| 58 |
|
| 59 |
aux = "[{}]\tINFO:\nTRAIN DATASET: {}\nVALIDATION DATASET: {}\n" \
|
| 60 |
"GPU: {}\n" \
|
|
|
|
| 88 |
validation_generator = data_generator.get_validation_generator()
|
| 89 |
|
| 90 |
image_input_shape = train_generator.get_data_shape()[1][:-1]
|
| 91 |
+
image_output_shape = [image_size] * 3
|
| 92 |
|
| 93 |
nb_labels = len(train_generator.get_segmentation_labels())
|
| 94 |
|
|
|
|
| 116 |
trainable=False)
|
| 117 |
augm_model = Model(inputs=input_layer_augm, outputs=augm_layer(input_layer_augm))
|
| 118 |
|
| 119 |
+
# enc_features = [16, 32, 32, 32] # const.ENCODER_FILTERS
|
| 120 |
+
# dec_features = [32, 32, 32, 32, 32, 16, 16] # const.ENCODER_FILTERS[::-1]
|
| 121 |
+
enc_features = unet # const.ENCODER_FILTERS
|
| 122 |
+
dec_features = enc_features[::-1] + head # const.ENCODER_FILTERS[::-1]
|
| 123 |
nb_features = [enc_features, dec_features]
|
| 124 |
|
| 125 |
network = vxm.networks.VxmDenseSemiSupervisedSeg(inshape=image_output_shape,
|
|
|
|
| 147 |
@function_decorator('MS_SSIM_MSE__loss')
|
| 148 |
def loss_simil(y_true, y_pred):
|
| 149 |
return MultiScaleStructuralSimilarity(max_val=1., filter_size=SSIM_KER_SIZE, power_factors=MS_SSIM_WEIGHTS).loss(y_true, y_pred) + vxm.losses.MSE().loss(y_true, y_pred)
|
| 150 |
+
elif simil=='ssim__ncc' or simil=='ncc__ssim':
|
| 151 |
@function_decorator('SSIM_NCC__loss')
|
| 152 |
def loss_simil(y_true, y_pred):
|
| 153 |
return StructuralSimilarity_simplified(patch_size=SSIM_KER_SIZE, dim=3, dynamic_range=1.).loss(y_true, y_pred) + NCC(image_input_shape).loss(y_true, y_pred)
|
|
|
|
| 162 |
loss_segm = HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [nb_labels]).loss
|
| 163 |
elif segm == 'dice':
|
| 164 |
loss_segm = GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).loss
|
| 165 |
+
elif segm == 'dice_macro':
|
| 166 |
+
loss_segm = GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).loss_macro
|
| 167 |
else:
|
| 168 |
raise ValueError('No valid value for segm')
|
| 169 |
|
|
|
|
| 174 |
'seg_transformer': 1.,
|
| 175 |
'flow': 5e-3}
|
| 176 |
metrics = {'transformer': [vxm.losses.MSE().loss, NCC(image_input_shape).metric, MultiScaleStructuralSimilarity(max_val=1., filter_size=SSIM_KER_SIZE, power_factors=MS_SSIM_WEIGHTS).metric],
|
| 177 |
+
'seg_transformer': [GeneralizedDICEScore(image_output_shape + [train_generator.get_data_shape()[2][-1]], num_labels=nb_labels).metric_macro,
|
| 178 |
+
#HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [train_generator.get_data_shape()[2][-1]]).metric
|
| 179 |
]}
|
| 180 |
metrics_weights = {'transformer': 1,
|
| 181 |
'seg_transformer': 1,
|
Brain_study/Train_UncertaintyWeighted.py
CHANGED
|
@@ -26,28 +26,33 @@ from DeepDeformationMapRegistration.utils.acummulated_optimizer import AdamAccum
|
|
| 26 |
|
| 27 |
from Brain_study.data_generator import BatchGenerator
|
| 28 |
from Brain_study.utils import SummaryDictionary, named_logs
|
|
|
|
| 29 |
|
| 30 |
|
| 31 |
-
def launch_train(dataset_folder, validation_folder, output_folder, prior_reg_w=5e-3, lr=1e-4,
|
| 32 |
-
gpu_num=0, simil=['mse'], segm=['dice']
|
|
|
|
| 33 |
assert dataset_folder is not None and output_folder is not None
|
| 34 |
|
| 35 |
os.environ['CUDA_DEVICE_ORDER'] = C.DEV_ORDER
|
| 36 |
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_num) # Check availability before running using 'nvidia-smi'
|
| 37 |
C.GPU_NUM = str(gpu_num)
|
| 38 |
|
|
|
|
|
|
|
|
|
|
| 39 |
output_folder = os.path.join(output_folder + '_' + datetime.now().strftime("%H%M%S-%d%m%Y"))
|
| 40 |
# dataset_copy = DatasetCopy(dataset_folder, os.path.join(output_folder, 'temp'))
|
| 41 |
os.makedirs(output_folder, exist_ok=True)
|
| 42 |
log_file = open(os.path.join(output_folder, 'log.txt'), 'w')
|
| 43 |
C.TRAINING_DATASET = dataset_folder #dataset_copy.copy_dataset()
|
| 44 |
C.VALIDATION_DATASET = validation_folder
|
| 45 |
-
C.ACCUM_GRADIENT_STEP =
|
| 46 |
-
C.BATCH_SIZE =
|
| 47 |
-
C.EARLY_STOP_PATIENCE =
|
| 48 |
C.LEARNING_RATE = lr
|
| 49 |
C.LIMIT_NUM_SAMPLES = None
|
| 50 |
-
C.EPOCHS =
|
| 51 |
|
| 52 |
aux = "[{}]\tINFO:\nTRAIN DATASET: {}\nVALIDATION DATASET: {}\n" \
|
| 53 |
"GPU: {}\n" \
|
|
@@ -81,7 +86,7 @@ def launch_train(dataset_folder, validation_folder, output_folder, prior_reg_w=5
|
|
| 81 |
validation_generator = data_generator.get_validation_generator()
|
| 82 |
|
| 83 |
image_input_shape = train_generator.get_data_shape()[-1][:-1]
|
| 84 |
-
image_output_shape = [
|
| 85 |
|
| 86 |
nb_labels = len(train_generator.get_segmentation_labels())
|
| 87 |
|
|
@@ -119,13 +124,16 @@ def launch_train(dataset_folder, validation_folder, output_folder, prior_reg_w=5
|
|
| 119 |
loss_segm = []
|
| 120 |
for s in segm:
|
| 121 |
if s=='dice':
|
| 122 |
-
loss_segm.append(GeneralizedDICEScore(image_output_shape + [
|
| 123 |
prior_loss_w.append(1.)
|
| 124 |
elif s=='hd':
|
| 125 |
-
loss_segm.append(HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [
|
|
|
|
|
|
|
|
|
|
| 126 |
prior_loss_w.append(1.)
|
| 127 |
else:
|
| 128 |
-
raise ValueError('Unknown similarity function: '
|
| 129 |
|
| 130 |
# Build augmentation layer model
|
| 131 |
input_layer_augm = Input(shape=train_generator.get_data_shape()[0], name='input_augmentation')
|
|
@@ -142,8 +150,10 @@ def launch_train(dataset_folder, validation_folder, output_folder, prior_reg_w=5
|
|
| 142 |
trainable=False)
|
| 143 |
augmentation_model = Model(inputs=input_layer_augm, outputs=augm_layer(input_layer_augm))
|
| 144 |
|
| 145 |
-
enc_features = [16, 32, 32, 32] # const.ENCODER_FILTERS
|
| 146 |
-
dec_features = [32, 32, 32, 32, 32, 16, 16] # const.ENCODER_FILTERS[::-1]
|
|
|
|
|
|
|
| 147 |
nb_features = [enc_features, dec_features]
|
| 148 |
network = vxm.networks.VxmDenseSemiSupervisedSeg(inshape=image_output_shape,
|
| 149 |
nb_labels=nb_labels,
|
|
|
|
| 26 |
|
| 27 |
from Brain_study.data_generator import BatchGenerator
|
| 28 |
from Brain_study.utils import SummaryDictionary, named_logs
|
| 29 |
+
import warnings
|
| 30 |
|
| 31 |
|
| 32 |
+
def launch_train(dataset_folder, validation_folder, output_folder, prior_reg_w=5e-3, lr=1e-4, rw=5e-3,
|
| 33 |
+
gpu_num=0, simil=['mse'], segm=['dice'], acc_gradients=16, batch_size=1, max_epochs=10000,
|
| 34 |
+
early_stop_patience=1000, image_size=64, unet=[16, 32, 64, 128, 256], head=[16, 16]):
|
| 35 |
assert dataset_folder is not None and output_folder is not None
|
| 36 |
|
| 37 |
os.environ['CUDA_DEVICE_ORDER'] = C.DEV_ORDER
|
| 38 |
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_num) # Check availability before running using 'nvidia-smi'
|
| 39 |
C.GPU_NUM = str(gpu_num)
|
| 40 |
|
| 41 |
+
if batch_size != 1 and acc_gradients != 1:
|
| 42 |
+
warnings.warn('WARNING: Batch size and Accumulative gradient step are set!')
|
| 43 |
+
|
| 44 |
output_folder = os.path.join(output_folder + '_' + datetime.now().strftime("%H%M%S-%d%m%Y"))
|
| 45 |
# dataset_copy = DatasetCopy(dataset_folder, os.path.join(output_folder, 'temp'))
|
| 46 |
os.makedirs(output_folder, exist_ok=True)
|
| 47 |
log_file = open(os.path.join(output_folder, 'log.txt'), 'w')
|
| 48 |
C.TRAINING_DATASET = dataset_folder #dataset_copy.copy_dataset()
|
| 49 |
C.VALIDATION_DATASET = validation_folder
|
| 50 |
+
C.ACCUM_GRADIENT_STEP = acc_gradients
|
| 51 |
+
C.BATCH_SIZE = batch_size if C.ACCUM_GRADIENT_STEP == 1 else 1
|
| 52 |
+
C.EARLY_STOP_PATIENCE = early_stop_patience
|
| 53 |
C.LEARNING_RATE = lr
|
| 54 |
C.LIMIT_NUM_SAMPLES = None
|
| 55 |
+
C.EPOCHS = max_epochs
|
| 56 |
|
| 57 |
aux = "[{}]\tINFO:\nTRAIN DATASET: {}\nVALIDATION DATASET: {}\n" \
|
| 58 |
"GPU: {}\n" \
|
|
|
|
| 86 |
validation_generator = data_generator.get_validation_generator()
|
| 87 |
|
| 88 |
image_input_shape = train_generator.get_data_shape()[-1][:-1]
|
| 89 |
+
image_output_shape = [image_size] * 3
|
| 90 |
|
| 91 |
nb_labels = len(train_generator.get_segmentation_labels())
|
| 92 |
|
|
|
|
| 124 |
loss_segm = []
|
| 125 |
for s in segm:
|
| 126 |
if s=='dice':
|
| 127 |
+
loss_segm.append(GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).loss)
|
| 128 |
prior_loss_w.append(1.)
|
| 129 |
elif s=='hd':
|
| 130 |
+
loss_segm.append(HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [nb_labels]).loss)
|
| 131 |
+
prior_loss_w.append(1.)
|
| 132 |
+
elif s == 'dice_macro':
|
| 133 |
+
loss_segm.append(GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).loss_macro)
|
| 134 |
prior_loss_w.append(1.)
|
| 135 |
else:
|
| 136 |
+
raise ValueError('Unknown similarity function: ' + s)
|
| 137 |
|
| 138 |
# Build augmentation layer model
|
| 139 |
input_layer_augm = Input(shape=train_generator.get_data_shape()[0], name='input_augmentation')
|
|
|
|
| 150 |
trainable=False)
|
| 151 |
augmentation_model = Model(inputs=input_layer_augm, outputs=augm_layer(input_layer_augm))
|
| 152 |
|
| 153 |
+
# enc_features = [16, 32, 32, 32] # const.ENCODER_FILTERS
|
| 154 |
+
# dec_features = [32, 32, 32, 32, 32, 16, 16] # const.ENCODER_FILTERS[::-1]
|
| 155 |
+
enc_features = unet # const.ENCODER_FILTERS
|
| 156 |
+
dec_features = enc_features[::-1] + head # const.ENCODER_FILTERS[::-1]
|
| 157 |
nb_features = [enc_features, dec_features]
|
| 158 |
network = vxm.networks.VxmDenseSemiSupervisedSeg(inshape=image_output_shape,
|
| 159 |
nb_labels=nb_labels,
|