feature: added post hoc analysis script for paper
Browse files- EvaluationScripts/statistics.py +139 -0
EvaluationScripts/statistics.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from statsmodels.stats.multicomp import pairwise_tukeyhsd
|
3 |
+
from statsmodels.stats.multitest import fdrcorrection
|
4 |
+
from scipy import stats
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
|
8 |
+
# increase length of string in pandas
|
9 |
+
pd.options.display.max_colwidth = 100
|
10 |
+
|
11 |
+
|
12 |
+
def post_hoc_ixi():
|
13 |
+
file_path = "/Users/andreped/Downloads/ALL_METRICS.csv"
|
14 |
+
|
15 |
+
df = pd.read_csv(file_path, sep=";")
|
16 |
+
df = df.iloc[:, 1:]
|
17 |
+
df = df[df["Experiment"] == "IXI"]
|
18 |
+
df["Model"] = [x.replace("_", "-") for x in df["Model"]]
|
19 |
+
|
20 |
+
TRE_values = df["TRE"]
|
21 |
+
m_comp = pairwise_tukeyhsd(df["TRE"], df["Model"], alpha=0.05)
|
22 |
+
model_names = np.unique(df["Model"])
|
23 |
+
|
24 |
+
all_pvalues = -1 * np.ones((len(model_names), len(model_names)), dtype=np.float32)
|
25 |
+
pvs = m_comp.pvalues
|
26 |
+
cnt = 0
|
27 |
+
for i in range(len(model_names)):
|
28 |
+
for j in range(i + 1, len(model_names)):
|
29 |
+
all_pvalues[i, j] = pvs[cnt]
|
30 |
+
cnt += 1
|
31 |
+
all_pvalues = np.round(all_pvalues, 6)
|
32 |
+
all_pvalues = all_pvalues[:-1, 1:]
|
33 |
+
|
34 |
+
col_new_names = ["\textbf{\rot{\multicolumn{1}{r}{" + n + "}}}" for n in model_names]
|
35 |
+
|
36 |
+
out_pd = pd.DataFrame(data=all_pvalues, index=model_names[:-1], columns=col_new_names[1:])
|
37 |
+
stack = out_pd.stack()
|
38 |
+
stack[(0 < stack) & (stack <= 0.001)] = '\cellcolor{green!25}$<$0.001'
|
39 |
+
|
40 |
+
for i in range(stack.shape[0]):
|
41 |
+
try:
|
42 |
+
curr = stack[i]
|
43 |
+
if (float(curr) > 0.0011) & (float(curr) < 0.05):
|
44 |
+
stack[i] = '\cellcolor{green!50}' + str(np.round(stack[i], 3))
|
45 |
+
elif (float(curr) >= 0.05) & (float(curr) < 0.1):
|
46 |
+
stack[i] = '\cellcolor{red!50}' + str(np.round(stack[i], 3))
|
47 |
+
elif (float(curr) >= 0.1):
|
48 |
+
stack[i] = '\cellcolor{red!25}' + str(np.round(stack[i], 3))
|
49 |
+
except Exception:
|
50 |
+
continue
|
51 |
+
|
52 |
+
out_pd = stack.unstack()
|
53 |
+
out_pd = out_pd.replace(-1.0, "-")
|
54 |
+
out_pd = out_pd.replace(-0.0, '\cellcolor{green!25}$<$0.001')
|
55 |
+
|
56 |
+
with open("./tukey_pvalues_result_IXI.txt", "w") as pfile:
|
57 |
+
pfile.write("{}".format(out_pd.to_latex(escape=False, column_format="r" + "c"*all_pvalues.shape[1], bold_rows=True)))
|
58 |
+
|
59 |
+
print(out_pd)
|
60 |
+
|
61 |
+
|
62 |
+
def study_transfer_learning_benefit():
|
63 |
+
file_path = "/Users/andreped/Downloads/ALL_METRICS.csv"
|
64 |
+
|
65 |
+
df = pd.read_csv(file_path, sep=";")
|
66 |
+
df = df.iloc[:, 1:]
|
67 |
+
df["Model"] = [x.replace("_", "-") for x in df["Model"]]
|
68 |
+
|
69 |
+
df_tl = df[df["Experiment"] == "COMET_TL_Ft2Stp"]
|
70 |
+
df_orig = df[df["Experiment"] == "COMET"]
|
71 |
+
|
72 |
+
pvs = []
|
73 |
+
for model in ["BL-N", "SG-NSD", "UW-NSD"]:
|
74 |
+
|
75 |
+
curr_tl = df_tl[df_tl["Model"] == model]
|
76 |
+
curr_orig = df_orig[df_orig["Model"] == model]
|
77 |
+
|
78 |
+
TRE_tl = curr_tl["TRE"]
|
79 |
+
TRE_orig = curr_orig["TRE"]
|
80 |
+
|
81 |
+
# perform non-parametric hypothesis test to assess significance
|
82 |
+
ret = stats.wilcoxon(TRE_tl, TRE_orig, alternative="less")
|
83 |
+
pv = ret.pvalue
|
84 |
+
pvs.append(pv)
|
85 |
+
|
86 |
+
# False discovery rate to get corrected p-values
|
87 |
+
corrected_pvs = fdrcorrection(pvs, alpha=0.05, method="indep")[1] # Benjamini/Hochberg -> method="indep"
|
88 |
+
|
89 |
+
print("BL-N:", corrected_pvs[0])
|
90 |
+
print("SG-NSD:", corrected_pvs[1])
|
91 |
+
print("UW-NSD:", corrected_pvs[2])
|
92 |
+
|
93 |
+
|
94 |
+
def post_hoc_comet():
|
95 |
+
file_path = "/Users/andreped/Downloads/ALL_METRICS.csv"
|
96 |
+
|
97 |
+
df = pd.read_csv(file_path, sep=";")
|
98 |
+
df = df.iloc[:, 1:]
|
99 |
+
df["Model"] = [x.replace("_", "-") for x in df["Model"]]
|
100 |
+
|
101 |
+
df_tl = df[df["Experiment"] == "COMET_TL_Ft2Stp"]
|
102 |
+
|
103 |
+
filter_ = np.array([x in ["BL-N", "SG-NSD", "UW-NSD"] for x in df_tl["Model"]])
|
104 |
+
|
105 |
+
df_tl = df_tl[filter_]
|
106 |
+
|
107 |
+
# Is TRE in SG-NSD significantly lower than TRE in BL-N?
|
108 |
+
ret1 = stats.wilcoxon(
|
109 |
+
df_tl[df_tl["Model"] == "SG-NSD"]["TRE"],
|
110 |
+
df_tl[df_tl["Model"] == "BL-N"]["TRE"],
|
111 |
+
alternative="less"
|
112 |
+
)
|
113 |
+
pv1 = ret1.pvalue
|
114 |
+
|
115 |
+
# Is TRE in UW-NSD significantly lower than TRE in SG_NSD?
|
116 |
+
ret2 = stats.wilcoxon(
|
117 |
+
df_tl[df_tl["Model"] == "UW-NSD"]["TRE"],
|
118 |
+
df_tl[df_tl["Model"] == "SG-NSD"]["TRE"],
|
119 |
+
alternative="less"
|
120 |
+
)
|
121 |
+
pv2 = ret2.pvalue
|
122 |
+
|
123 |
+
# False discovery rate to get corrected p-values
|
124 |
+
pvs = [pv1, pv2]
|
125 |
+
corrected_pvs = fdrcorrection(pvs, alpha=0.05, method="indep")[1] # Benjamini/Hochberg -> method="indep"
|
126 |
+
|
127 |
+
print("Seg-guiding benefit:", corrected_pvs[0])
|
128 |
+
print("Uncertainty-weighting benefit:", corrected_pvs[1])
|
129 |
+
|
130 |
+
|
131 |
+
if __name__ == "__main__":
|
132 |
+
print("\nComparing all contrasts in TRE of all models in the IXI dataset:")
|
133 |
+
post_hoc_ixi()
|
134 |
+
|
135 |
+
print("\nTransfer learning benefit (COMET):")
|
136 |
+
study_transfer_learning_benefit()
|
137 |
+
|
138 |
+
print("\nAssessing whether there is a benefit to segmentation-guiding and uncertainty weighting (COMET):")
|
139 |
+
post_hoc_comet()
|