Commit
·
70656f8
1
Parent(s):
b10768a
ANTs script
Browse files- ANTs/eval_ants.py +149 -0
ANTs/eval_ants.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import h5py
|
2 |
+
import ants
|
3 |
+
import numpy as np
|
4 |
+
import DeepDeformationMapRegistration.utils.constants as C
|
5 |
+
import os
|
6 |
+
from tqdm import tqdm
|
7 |
+
import re
|
8 |
+
|
9 |
+
from DeepDeformationMapRegistration.losses import StructuralSimilarity_simplified, NCC, GeneralizedDICEScore, HausdorffDistanceErosion, target_registration_error
|
10 |
+
from DeepDeformationMapRegistration.ms_ssim_tf import MultiScaleStructuralSimilarity
|
11 |
+
from DeepDeformationMapRegistration.utils.misc import DisplacementMapInterpolator, segmentation_ohe_to_cardinal
|
12 |
+
|
13 |
+
from argparse import ArgumentParser
|
14 |
+
|
15 |
+
import tensorflow as tf
|
16 |
+
|
17 |
+
DATASET_LOCATION = '/mnt/EncryptedData1/Users/javier/vessel_registration/3Dirca/dataset/EVAL'
|
18 |
+
DATASET_NAMES = 'test_sample_\d{4}.h5'
|
19 |
+
DATASET_FILENAME = 'volume'
|
20 |
+
IMGS_FOLDER = '/home/jpdefrutos/workspace/DeepDeformationMapRegistration/Centerline/imgs'
|
21 |
+
|
22 |
+
WARPED_MOV = 'warpedmovout'
|
23 |
+
WARPED_FIX = 'warpedfixout'
|
24 |
+
FWD_TRFS = 'fwdtransforms'
|
25 |
+
INV_TRFS = 'invtransforms'
|
26 |
+
|
27 |
+
if __name__ == '__main__':
|
28 |
+
parser = ArgumentParser()
|
29 |
+
parser.add_argument('--dataset', type=str, help='Directory with the images')
|
30 |
+
parser.add_argument('--outdir', type=str, help='Output directory')
|
31 |
+
args = parser.parse_args()
|
32 |
+
|
33 |
+
dataset_files = os.listdir(args.dataset)
|
34 |
+
dataset_files.sort()
|
35 |
+
dataset_files = [os.path.join(args.dataset, f) for f in dataset_files if re.match(DATASET_NAMES, f)]
|
36 |
+
|
37 |
+
dataset_iterator = tqdm(dataset_files)
|
38 |
+
|
39 |
+
f = h5py.File(dataset_files[0], 'r')
|
40 |
+
image_output_shape = list(f['fix_image'][:].shape[:-1])
|
41 |
+
f.close()
|
42 |
+
|
43 |
+
#### TF prep
|
44 |
+
metric_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric,
|
45 |
+
NCC(image_input_shape).metric,
|
46 |
+
vxm.losses.MSE().loss,
|
47 |
+
MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric,
|
48 |
+
GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric,
|
49 |
+
HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [nb_labels]).metric,
|
50 |
+
GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric_macro]
|
51 |
+
|
52 |
+
fix_img_ph = tf.placeholder(tf.float32, (1, *image_output_shape, 1), name='fix_img')
|
53 |
+
pred_img_ph = tf.placeholder(tf.float32, (1, *image_output_shape, 1), name='pred_img')
|
54 |
+
fix_seg_ph = tf.placeholder(tf.float32, (1, *image_output_shape, nb_labels), name='fix_seg')
|
55 |
+
pred_seg_ph = tf.placeholder(tf.float32, (1, *image_output_shape, nb_labels), name='pred_seg')
|
56 |
+
|
57 |
+
ssim_tf = metric_fncs[0](fix_img_ph, pred_img_ph)
|
58 |
+
ncc_tf = metric_fncs[1](fix_img_ph, pred_img_ph)
|
59 |
+
mse_tf = metric_fncs[2](fix_img_ph, pred_img_ph)
|
60 |
+
ms_ssim_tf = metric_fncs[3](fix_img_ph, pred_img_ph)
|
61 |
+
dice_tf = metric_fncs[4](fix_seg_ph, pred_seg_ph)
|
62 |
+
hd_tf = metric_fncs[5](fix_seg_ph, pred_seg_ph)
|
63 |
+
dice_macro_tf = metric_fncs[6](fix_seg_ph, pred_seg_ph)
|
64 |
+
|
65 |
+
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
|
66 |
+
config.gpu_options.allow_growth = True
|
67 |
+
config.log_device_placement = False ## to log device placement (on which device the operation ran)
|
68 |
+
config.allow_soft_placement = True
|
69 |
+
|
70 |
+
sess = tf.Session(config=config)
|
71 |
+
tf.keras.backend.set_session(sess)
|
72 |
+
####
|
73 |
+
dm_interp = DisplacementMapInterpolator(image_output_shape, 'griddata')
|
74 |
+
|
75 |
+
metrics_file = os.path.join(output_folder, 'metrics.csv')
|
76 |
+
|
77 |
+
for file_path in dataset_iterator:
|
78 |
+
file_num = int(re.findall('(\d+)', os.path.split(file_path)[-1])[0])
|
79 |
+
|
80 |
+
dataset_iterator.set_description('{} ({}): laoding data'.format(file_num, dataset_name))
|
81 |
+
with h5py.File(file_path, 'r') as vol_file:
|
82 |
+
fix_img = vol_file['fix_image'][:]
|
83 |
+
mov_img = vol_file['mov_image'][:]
|
84 |
+
|
85 |
+
fix_seg = vol_file['fix_segmentations'][:]
|
86 |
+
mov_seg = vol_file['mov_segmentations'][:]
|
87 |
+
|
88 |
+
fix_centroid = vol_file['fix_centroids'][:]
|
89 |
+
mov_centroid = vol_file['mov_centroids'][:]
|
90 |
+
|
91 |
+
# ndarray to ANTsImage
|
92 |
+
fix_img = ants.make_image(fix_img.shape, fix_img)
|
93 |
+
mov_img = ants.make_image(mov_img.shape, mov_img)
|
94 |
+
|
95 |
+
reg_output_syn = ants.registration(fix_img, mov_img, 'SyN')
|
96 |
+
reg_output_syncc = ants.registration(fix_img, mov_img, 'SyNCC')
|
97 |
+
mov_to_fix_trf_syn = reg_output_syn[FWD_TRFS]
|
98 |
+
mov_to_fix_trf_syncc = reg_output_syn[FWD_TRFS]
|
99 |
+
if not len(mov_to_fix_trf_syn) and not len(mov_to_fix_trf_syncc):
|
100 |
+
print('ERR: Registration failed for: '+file_path)
|
101 |
+
else:
|
102 |
+
for reg_output in [reg_output_syn, reg_output_syncc]:
|
103 |
+
mov_to_fix_trf = reg_output[FWD_TRFS]
|
104 |
+
pred_img = reg_output[WARPED_MOV].numpy()
|
105 |
+
pred_seg = mov_to_fix_trf.apply_to_image(ants.make_image(mov_seg.shape, mov_seg)).numpy()
|
106 |
+
|
107 |
+
with sess.as_default():
|
108 |
+
dice, hd, dice_macro = sess.run([dice_tf, hd_tf, dice_macro_tf],
|
109 |
+
{'fix_seg:0': fix_seg, 'pred_seg:0': pred_seg})
|
110 |
+
|
111 |
+
pred_seg_card = segmentation_ohe_to_cardinal(pred_seg).astype(np.float32)
|
112 |
+
mov_seg_card = segmentation_ohe_to_cardinal(mov_seg).astype(np.float32)
|
113 |
+
fix_seg_card = segmentation_ohe_to_cardinal(fix_seg).astype(np.float32)
|
114 |
+
|
115 |
+
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
|
116 |
+
{'fix_img:0': fix_img, 'pred_img:0': pred_img})
|
117 |
+
ms_ssim = ms_ssim[0]
|
118 |
+
tf.keras.backend.clear_session()
|
119 |
+
|
120 |
+
# TRE
|
121 |
+
pred_centroids = dm_interp(mov_to_fix_trf.numpy(), mov_centroid, backwards=True) + mov_centroid
|
122 |
+
upsample_scale = 128 / 64
|
123 |
+
fix_centroids_isotropic = fix_centroids * upsample_scale
|
124 |
+
pred_centroids_isotropic = pred_centroids * upsample_scale
|
125 |
+
|
126 |
+
fix_centroids_isotropic = np.divide(fix_centroids_isotropic, C.IXI_DATASET_iso_to_cubic_scales)
|
127 |
+
pred_centroids_isotropic = np.divide(pred_centroids_isotropic, C.IXI_DATASET_iso_to_cubic_scales)
|
128 |
+
tre_array = target_registration_error(fix_centroids_isotropic, pred_centroids_isotropic, False).eval()
|
129 |
+
tre = np.mean([v for v in tre_array if not np.isnan(v)])
|
130 |
+
|
131 |
+
new_line = [step, ssim, ms_ssim, ncc, mse, dice, dice_macro, hd, t1-t0, tre, len(missing_lbls), missing_lbls]
|
132 |
+
with open(metrics_file, 'a') as f:
|
133 |
+
f.write(';'.join(map(str, new_line))+'\n')
|
134 |
+
|
135 |
+
save_nifti(fix_img[0, ...], os.path.join(output_folder, '{:03d}_fix_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
136 |
+
save_nifti(mov_img[0, ...], os.path.join(output_folder, '{:03d}_mov_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
137 |
+
save_nifti(pred_img[0, ...], os.path.join(output_folder, '{:03d}_pred_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
138 |
+
save_nifti(fix_seg_card[0, ...], os.path.join(output_folder, '{:03d}_fix_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
139 |
+
save_nifti(mov_seg_card[0, ...], os.path.join(output_folder, '{:03d}_mov_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
140 |
+
save_nifti(pred_seg_card[0, ...], os.path.join(output_folder, '{:03d}_pred_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
|
141 |
+
|
142 |
+
plot_predictions(fix_img, mov_img, disp_map, pred_img, os.path.join(output_folder, '{:03d}_figures_img.png'.format(step)), show=False)
|
143 |
+
plot_predictions(fix_seg, mov_seg, disp_map, pred_seg, os.path.join(output_folder, '{:03d}_figures_seg.png'.format(step)), show=False)
|
144 |
+
save_disp_map_img(disp_map, 'Displacement map', os.path.join(output_folder, '{:03d}_disp_map_fig.png'.format(step)), show=False)
|
145 |
+
|
146 |
+
print('Summary\n=======\n')
|
147 |
+
print('\nAVG:\n' + str(pd.read_csv(metrics_file, sep=';', header=0).mean(axis=0)) + '\nSTD:\n' + str(
|
148 |
+
pd.read_csv(metrics_file, sep=';', header=0).std(axis=0)))
|
149 |
+
print('\n=======\n')
|