jpdefrutos commited on
Commit
70656f8
·
1 Parent(s): b10768a

ANTs script

Browse files
Files changed (1) hide show
  1. ANTs/eval_ants.py +149 -0
ANTs/eval_ants.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import h5py
2
+ import ants
3
+ import numpy as np
4
+ import DeepDeformationMapRegistration.utils.constants as C
5
+ import os
6
+ from tqdm import tqdm
7
+ import re
8
+
9
+ from DeepDeformationMapRegistration.losses import StructuralSimilarity_simplified, NCC, GeneralizedDICEScore, HausdorffDistanceErosion, target_registration_error
10
+ from DeepDeformationMapRegistration.ms_ssim_tf import MultiScaleStructuralSimilarity
11
+ from DeepDeformationMapRegistration.utils.misc import DisplacementMapInterpolator, segmentation_ohe_to_cardinal
12
+
13
+ from argparse import ArgumentParser
14
+
15
+ import tensorflow as tf
16
+
17
+ DATASET_LOCATION = '/mnt/EncryptedData1/Users/javier/vessel_registration/3Dirca/dataset/EVAL'
18
+ DATASET_NAMES = 'test_sample_\d{4}.h5'
19
+ DATASET_FILENAME = 'volume'
20
+ IMGS_FOLDER = '/home/jpdefrutos/workspace/DeepDeformationMapRegistration/Centerline/imgs'
21
+
22
+ WARPED_MOV = 'warpedmovout'
23
+ WARPED_FIX = 'warpedfixout'
24
+ FWD_TRFS = 'fwdtransforms'
25
+ INV_TRFS = 'invtransforms'
26
+
27
+ if __name__ == '__main__':
28
+ parser = ArgumentParser()
29
+ parser.add_argument('--dataset', type=str, help='Directory with the images')
30
+ parser.add_argument('--outdir', type=str, help='Output directory')
31
+ args = parser.parse_args()
32
+
33
+ dataset_files = os.listdir(args.dataset)
34
+ dataset_files.sort()
35
+ dataset_files = [os.path.join(args.dataset, f) for f in dataset_files if re.match(DATASET_NAMES, f)]
36
+
37
+ dataset_iterator = tqdm(dataset_files)
38
+
39
+ f = h5py.File(dataset_files[0], 'r')
40
+ image_output_shape = list(f['fix_image'][:].shape[:-1])
41
+ f.close()
42
+
43
+ #### TF prep
44
+ metric_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric,
45
+ NCC(image_input_shape).metric,
46
+ vxm.losses.MSE().loss,
47
+ MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric,
48
+ GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric,
49
+ HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [nb_labels]).metric,
50
+ GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric_macro]
51
+
52
+ fix_img_ph = tf.placeholder(tf.float32, (1, *image_output_shape, 1), name='fix_img')
53
+ pred_img_ph = tf.placeholder(tf.float32, (1, *image_output_shape, 1), name='pred_img')
54
+ fix_seg_ph = tf.placeholder(tf.float32, (1, *image_output_shape, nb_labels), name='fix_seg')
55
+ pred_seg_ph = tf.placeholder(tf.float32, (1, *image_output_shape, nb_labels), name='pred_seg')
56
+
57
+ ssim_tf = metric_fncs[0](fix_img_ph, pred_img_ph)
58
+ ncc_tf = metric_fncs[1](fix_img_ph, pred_img_ph)
59
+ mse_tf = metric_fncs[2](fix_img_ph, pred_img_ph)
60
+ ms_ssim_tf = metric_fncs[3](fix_img_ph, pred_img_ph)
61
+ dice_tf = metric_fncs[4](fix_seg_ph, pred_seg_ph)
62
+ hd_tf = metric_fncs[5](fix_seg_ph, pred_seg_ph)
63
+ dice_macro_tf = metric_fncs[6](fix_seg_ph, pred_seg_ph)
64
+
65
+ config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
66
+ config.gpu_options.allow_growth = True
67
+ config.log_device_placement = False ## to log device placement (on which device the operation ran)
68
+ config.allow_soft_placement = True
69
+
70
+ sess = tf.Session(config=config)
71
+ tf.keras.backend.set_session(sess)
72
+ ####
73
+ dm_interp = DisplacementMapInterpolator(image_output_shape, 'griddata')
74
+
75
+ metrics_file = os.path.join(output_folder, 'metrics.csv')
76
+
77
+ for file_path in dataset_iterator:
78
+ file_num = int(re.findall('(\d+)', os.path.split(file_path)[-1])[0])
79
+
80
+ dataset_iterator.set_description('{} ({}): laoding data'.format(file_num, dataset_name))
81
+ with h5py.File(file_path, 'r') as vol_file:
82
+ fix_img = vol_file['fix_image'][:]
83
+ mov_img = vol_file['mov_image'][:]
84
+
85
+ fix_seg = vol_file['fix_segmentations'][:]
86
+ mov_seg = vol_file['mov_segmentations'][:]
87
+
88
+ fix_centroid = vol_file['fix_centroids'][:]
89
+ mov_centroid = vol_file['mov_centroids'][:]
90
+
91
+ # ndarray to ANTsImage
92
+ fix_img = ants.make_image(fix_img.shape, fix_img)
93
+ mov_img = ants.make_image(mov_img.shape, mov_img)
94
+
95
+ reg_output_syn = ants.registration(fix_img, mov_img, 'SyN')
96
+ reg_output_syncc = ants.registration(fix_img, mov_img, 'SyNCC')
97
+ mov_to_fix_trf_syn = reg_output_syn[FWD_TRFS]
98
+ mov_to_fix_trf_syncc = reg_output_syn[FWD_TRFS]
99
+ if not len(mov_to_fix_trf_syn) and not len(mov_to_fix_trf_syncc):
100
+ print('ERR: Registration failed for: '+file_path)
101
+ else:
102
+ for reg_output in [reg_output_syn, reg_output_syncc]:
103
+ mov_to_fix_trf = reg_output[FWD_TRFS]
104
+ pred_img = reg_output[WARPED_MOV].numpy()
105
+ pred_seg = mov_to_fix_trf.apply_to_image(ants.make_image(mov_seg.shape, mov_seg)).numpy()
106
+
107
+ with sess.as_default():
108
+ dice, hd, dice_macro = sess.run([dice_tf, hd_tf, dice_macro_tf],
109
+ {'fix_seg:0': fix_seg, 'pred_seg:0': pred_seg})
110
+
111
+ pred_seg_card = segmentation_ohe_to_cardinal(pred_seg).astype(np.float32)
112
+ mov_seg_card = segmentation_ohe_to_cardinal(mov_seg).astype(np.float32)
113
+ fix_seg_card = segmentation_ohe_to_cardinal(fix_seg).astype(np.float32)
114
+
115
+ ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
116
+ {'fix_img:0': fix_img, 'pred_img:0': pred_img})
117
+ ms_ssim = ms_ssim[0]
118
+ tf.keras.backend.clear_session()
119
+
120
+ # TRE
121
+ pred_centroids = dm_interp(mov_to_fix_trf.numpy(), mov_centroid, backwards=True) + mov_centroid
122
+ upsample_scale = 128 / 64
123
+ fix_centroids_isotropic = fix_centroids * upsample_scale
124
+ pred_centroids_isotropic = pred_centroids * upsample_scale
125
+
126
+ fix_centroids_isotropic = np.divide(fix_centroids_isotropic, C.IXI_DATASET_iso_to_cubic_scales)
127
+ pred_centroids_isotropic = np.divide(pred_centroids_isotropic, C.IXI_DATASET_iso_to_cubic_scales)
128
+ tre_array = target_registration_error(fix_centroids_isotropic, pred_centroids_isotropic, False).eval()
129
+ tre = np.mean([v for v in tre_array if not np.isnan(v)])
130
+
131
+ new_line = [step, ssim, ms_ssim, ncc, mse, dice, dice_macro, hd, t1-t0, tre, len(missing_lbls), missing_lbls]
132
+ with open(metrics_file, 'a') as f:
133
+ f.write(';'.join(map(str, new_line))+'\n')
134
+
135
+ save_nifti(fix_img[0, ...], os.path.join(output_folder, '{:03d}_fix_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
136
+ save_nifti(mov_img[0, ...], os.path.join(output_folder, '{:03d}_mov_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
137
+ save_nifti(pred_img[0, ...], os.path.join(output_folder, '{:03d}_pred_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
138
+ save_nifti(fix_seg_card[0, ...], os.path.join(output_folder, '{:03d}_fix_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
139
+ save_nifti(mov_seg_card[0, ...], os.path.join(output_folder, '{:03d}_mov_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
140
+ save_nifti(pred_seg_card[0, ...], os.path.join(output_folder, '{:03d}_pred_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
141
+
142
+ plot_predictions(fix_img, mov_img, disp_map, pred_img, os.path.join(output_folder, '{:03d}_figures_img.png'.format(step)), show=False)
143
+ plot_predictions(fix_seg, mov_seg, disp_map, pred_seg, os.path.join(output_folder, '{:03d}_figures_seg.png'.format(step)), show=False)
144
+ save_disp_map_img(disp_map, 'Displacement map', os.path.join(output_folder, '{:03d}_disp_map_fig.png'.format(step)), show=False)
145
+
146
+ print('Summary\n=======\n')
147
+ print('\nAVG:\n' + str(pd.read_csv(metrics_file, sep=';', header=0).mean(axis=0)) + '\nSTD:\n' + str(
148
+ pd.read_csv(metrics_file, sep=';', header=0).std(axis=0)))
149
+ print('\n=======\n')