Added logging widget to demo
Browse files- demo/src/gui.py +27 -18
- demo/src/logger.py +26 -0
demo/src/gui.py
CHANGED
@@ -1,9 +1,17 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
from .compute import run_model
|
|
|
4 |
from .utils import load_ct_to_numpy
|
5 |
|
6 |
|
|
|
|
|
|
|
|
|
7 |
class WebUI:
|
8 |
def __init__(
|
9 |
self,
|
@@ -27,6 +35,7 @@ class WebUI:
|
|
27 |
"Brain": "B",
|
28 |
"Liver": "L"
|
29 |
}
|
|
|
30 |
|
31 |
self.fixed_image_path = None
|
32 |
self.moving_image_path = None
|
@@ -42,12 +51,12 @@ class WebUI:
|
|
42 |
label="Which 2D slice to show",
|
43 |
)
|
44 |
|
45 |
-
self.run_btn = gr.Button("Run analysis").style(
|
46 |
full_width=False, size="lg"
|
47 |
)
|
48 |
|
49 |
def set_class_name(self, value):
|
50 |
-
|
51 |
self.class_name = value
|
52 |
|
53 |
def upload_file(self, files):
|
@@ -85,7 +94,7 @@ class WebUI:
|
|
85 |
self.moving_images = load_ct_to_numpy(self.moving_image_path)
|
86 |
self.pred_images = load_ct_to_numpy(output_path + "pred_image.nii.gz")
|
87 |
|
88 |
-
return
|
89 |
|
90 |
def get_fixed_image(self, k):
|
91 |
k = int(k) - 1
|
@@ -121,7 +130,13 @@ class WebUI:
|
|
121 |
margin: auto;
|
122 |
}
|
123 |
#upload {
|
124 |
-
height:
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
}
|
126 |
"""
|
127 |
with gr.Blocks(css=css) as demo:
|
@@ -149,6 +164,9 @@ class WebUI:
|
|
149 |
info="Which task to perform image-to-registration on",
|
150 |
multiselect=False,
|
151 |
size="sm",
|
|
|
|
|
|
|
152 |
)
|
153 |
model_selector.input(
|
154 |
fn=lambda x: self.set_class_name(x),
|
@@ -158,19 +176,8 @@ class WebUI:
|
|
158 |
|
159 |
self.run_btn.render()
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
gr.Examples(
|
164 |
-
examples=[
|
165 |
-
os.path.join(self.cwd, "ixi_image.nii.gz"),
|
166 |
-
os.path.join(self.cwd, "ixi_image2.nii.gz"),
|
167 |
-
],
|
168 |
-
inputs=file_output,
|
169 |
-
outputs=file_output,
|
170 |
-
fn=self.upload_file,
|
171 |
-
cache_examples=True,
|
172 |
-
)
|
173 |
-
"""
|
174 |
|
175 |
with gr.Row():
|
176 |
with gr.Box():
|
@@ -201,6 +208,8 @@ class WebUI:
|
|
201 |
|
202 |
pred_images = []
|
203 |
for i in range(self.nb_slider_items):
|
|
|
|
|
204 |
visibility = True if i == 1 else False
|
205 |
t = gr.Image(
|
206 |
visible=visibility, elem_id="model-2d", label="predicted fixed image", show_label=True,
|
@@ -213,7 +222,7 @@ class WebUI:
|
|
213 |
self.run_btn.click(
|
214 |
fn=self.process,
|
215 |
inputs=None,
|
216 |
-
outputs=
|
217 |
)
|
218 |
|
219 |
self.slider.input(
|
|
|
1 |
+
import logging
|
2 |
+
import sys
|
3 |
+
|
4 |
import gradio as gr
|
5 |
|
6 |
from .compute import run_model
|
7 |
+
from .logger import setup_logger, read_logs
|
8 |
from .utils import load_ct_to_numpy
|
9 |
|
10 |
|
11 |
+
# setup logging
|
12 |
+
LOGGER = setup_logger()
|
13 |
+
|
14 |
+
|
15 |
class WebUI:
|
16 |
def __init__(
|
17 |
self,
|
|
|
35 |
"Brain": "B",
|
36 |
"Liver": "L"
|
37 |
}
|
38 |
+
self.class_name = "Brain"
|
39 |
|
40 |
self.fixed_image_path = None
|
41 |
self.moving_image_path = None
|
|
|
51 |
label="Which 2D slice to show",
|
52 |
)
|
53 |
|
54 |
+
self.run_btn = gr.Button("Run analysis", show_progress="full", elem_id="button").style(
|
55 |
full_width=False, size="lg"
|
56 |
)
|
57 |
|
58 |
def set_class_name(self, value):
|
59 |
+
LOGGER.info(f"Changed task to: {value}")
|
60 |
self.class_name = value
|
61 |
|
62 |
def upload_file(self, files):
|
|
|
94 |
self.moving_images = load_ct_to_numpy(self.moving_image_path)
|
95 |
self.pred_images = load_ct_to_numpy(output_path + "pred_image.nii.gz")
|
96 |
|
97 |
+
return self.pred_images[0]
|
98 |
|
99 |
def get_fixed_image(self, k):
|
100 |
k = int(k) - 1
|
|
|
130 |
margin: auto;
|
131 |
}
|
132 |
#upload {
|
133 |
+
height: 120px;
|
134 |
+
}
|
135 |
+
#button {
|
136 |
+
height: 120px;
|
137 |
+
}
|
138 |
+
#dropdown {
|
139 |
+
height: 120px;
|
140 |
}
|
141 |
"""
|
142 |
with gr.Blocks(css=css) as demo:
|
|
|
164 |
info="Which task to perform image-to-registration on",
|
165 |
multiselect=False,
|
166 |
size="sm",
|
167 |
+
default="Brain",
|
168 |
+
elem_id="dropdown",
|
169 |
+
|
170 |
)
|
171 |
model_selector.input(
|
172 |
fn=lambda x: self.set_class_name(x),
|
|
|
176 |
|
177 |
self.run_btn.render()
|
178 |
|
179 |
+
logs = gr.Textbox(label="Logs", info="Verbose from inference will be displayed below.", max_lines=8, autoscroll=True)
|
180 |
+
demo.load(read_logs, None, logs, every=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
with gr.Row():
|
183 |
with gr.Box():
|
|
|
208 |
|
209 |
pred_images = []
|
210 |
for i in range(self.nb_slider_items):
|
211 |
+
if i == 0:
|
212 |
+
first_pred_component = t
|
213 |
visibility = True if i == 1 else False
|
214 |
t = gr.Image(
|
215 |
visible=visibility, elem_id="model-2d", label="predicted fixed image", show_label=True,
|
|
|
222 |
self.run_btn.click(
|
223 |
fn=self.process,
|
224 |
inputs=None,
|
225 |
+
outputs=first_pred_component,
|
226 |
)
|
227 |
|
228 |
self.slider.input(
|
demo/src/logger.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import sys
|
3 |
+
|
4 |
+
|
5 |
+
def setup_logger():
|
6 |
+
# clear log
|
7 |
+
file_to_delete = open("log.log",'w')
|
8 |
+
file_to_delete.close()
|
9 |
+
|
10 |
+
file_handler = logging.FileHandler(filename='log.log')
|
11 |
+
stdout_handler = logging.StreamHandler(stream=sys.stdout)
|
12 |
+
handlers = [file_handler, stdout_handler]
|
13 |
+
|
14 |
+
logging.basicConfig(
|
15 |
+
level=logging.INFO,
|
16 |
+
format='[%(asctime)s] {%(filename)s:%(lineno)d} %(levelname)s - %(message)s',
|
17 |
+
handlers=handlers,
|
18 |
+
)
|
19 |
+
|
20 |
+
return logging.getLogger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
def read_logs():
|
24 |
+
sys.stdout.flush()
|
25 |
+
with open("log.log", "r") as f:
|
26 |
+
return f.read()
|