import os import requests from datetime import datetime from email.utils import parsedate_to_datetime, formatdate from DeepDeformationMapRegistration.utils.constants import ANATOMIES, MODEL_TYPES, ENCODER_FILTERS, DECODER_FILTERS, IMG_SHAPE import voxelmorph as vxm from DeepDeformationMapRegistration.utils.logger import LOGGER # taken from: https://lenon.dev/blog/downloading-and-caching-large-files-using-python/ def download(url, destination_file): headers = {} if os.path.exists(destination_file): mtime = os.path.getmtime(destination_file) headers["if-modified-since"] = formatdate(mtime, usegmt=True) response = requests.get(url, headers=headers, stream=True) response.raise_for_status() if response.status_code == requests.codes.not_modified: return if response.status_code == requests.codes.ok: with open(destination_file, "wb") as f: for chunk in response.iter_content(chunk_size=1048576): f.write(chunk) last_modified = response.headers.get("last-modified") if last_modified: new_mtime = parsedate_to_datetime(last_modified).timestamp() os.utime(destination_file, times=(datetime.now().timestamp(), new_mtime)) def get_models_path(anatomy: str, model_type: str, output_root_dir: str): assert anatomy in ANATOMIES.keys(), 'Invalid anatomy' assert model_type in MODEL_TYPES.keys(), 'Invalid model type' anatomy = ANATOMIES[anatomy] model_type = MODEL_TYPES[model_type] url = 'https://github.com/jpdefrutos/DDMR/releases/download/trained_models_v0/' + anatomy + '_' + model_type + '.h5' file_path = os.path.join(output_root_dir, 'models', anatomy, model_type + '.h5') if not os.path.exists(file_path): LOGGER.info(f'Model not found. Downloading from {url}... ') os.makedirs(os.path.split(file_path)[0], exist_ok=True) download(url, file_path) LOGGER.info(f'... downloaded model. Stored in {file_path}') else: LOGGER.info(f'Found model: {file_path}') return file_path def load_model(weights_file_path: str, trainable: bool = False, return_registration_model: bool=True): assert os.path.exists(weights_file_path), f'File {weights_file_path} not found' assert weights_file_path.endswith('h5'), 'Invalid file extension. Expected .h5' ret_val = vxm.networks.VxmDense(inshape=IMG_SHAPE[:-1], nb_unet_features=[ENCODER_FILTERS, DECODER_FILTERS], int_steps=0) ret_val.load_weights(weights_file_path, by_name=True) ret_val.trainable = trainable if return_registration_model: ret_val = (ret_val, ret_val.get_registration_model()) return ret_val