import os import argparse import random import warnings import math from shutil import copyfile from tqdm import tqdm import concurrent.futures import numpy as np def copy_file(s_d): s, d = s_d file_name = os.path.split(s)[-1] copyfile(s, os.path.join(d, file_name)) return int(os.path.exists(d)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--train', '-t', type=float, default=.70, help='Train percentage. Default: 0.70') parser.add_argument('--validation', '-v', type=float, default=0.15, help='Validation percentage. Default: 0.15') parser.add_argument('--test', '-s', type=float, default=0.15, help='Test percentage. Default: 0.15') parser.add_argument('-d', '--dir', type=str, help='Directory where the data is') parser.add_argument('-f', '--format', type=str, help='Format of the data files. Default: h5', default='h5') parser.add_argument('-r', '--random', type=bool, help='Randomly split the dataset or not. Default: True', default=True) args = parser.parse_args() assert args.train + args.validation + args.test == 1.0, 'Train+Validation+Test != 1 (100%)' file_set = [os.path.join(args.dir, f) for f in os.listdir(args.dir) if f.endswith(args.format)] random.shuffle(file_set) if args.random else file_set.sort() num_files = len(file_set) num_validation = math.floor(num_files * args.validation) num_test = math.floor(num_files * args.test) num_train = num_files - num_test - num_validation dataset_root, dataset_name = os.path.split(args.dir) dst_train = os.path.join(dataset_root, 'SPLIT_'+dataset_name, 'train_set') dst_validation = os.path.join(dataset_root, 'SPLIT_'+dataset_name, 'validation_set') dst_test = os.path.join(dataset_root, 'SPLIT_'+dataset_name, 'test_set') print('OUTPUT INFORMATION\n=============') print('Train:\t\t{}'.format(num_train)) print('Validation:\t{}'.format(num_validation)) print('Test:\t\t{}'.format(num_test)) print('Num. samples\t{}'.format(num_files)) print('Path:\t\t', os.path.join(dataset_root, 'SPLIT_'+dataset_name)) dest = [dst_train] * num_train + [dst_validation] * num_validation + [dst_test] * num_test os.makedirs(dst_train, exist_ok=True) os.makedirs(dst_validation, exist_ok=True) os.makedirs(dst_test, exist_ok=True) progress_bar = tqdm(zip(file_set, dest), desc='Copying files', total=num_files) with concurrent.futures.ProcessPoolExecutor(max_workers=10) as ex: results = list(tqdm(ex.map(copy_file, zip(file_set, dest)), desc='Copying files', total=num_files)) num_copies = np.sum(results) if num_copies == num_files: print('Done successfully') else: warnings.warn('Missing files: {}'.format(num_files - num_copies))