import networkx as nx import numpy as np from scipy.interpolate import RegularGridInterpolator, LinearNDInterpolator def graph_to_ndarray(graph): out_nodes = np.empty((1, 3)) out_edges = np.empty((1, 3)) visited_nodes = list() visited_node_pairs = list() for (start_node, end_node) in graph.edges(): if (not (start_node, end_node) in visited_node_pairs) and (not (end_node, start_node) in visited_node_pairs): edge = graph[start_node][end_node]['pts'] out_edges = np.vstack([out_edges, edge]) # Avoid duplicates if not (start_node in visited_nodes): out_nodes = np.vstack([out_nodes, graph.nodes[start_node]['o']]) visited_nodes.append(start_node) if not (end_node in visited_nodes): out_nodes = np.vstack([out_nodes, graph.nodes[end_node]['o']]) visited_nodes.append(end_node) visited_node_pairs.append((start_node, end_node)) return np.vstack([out_edges, out_nodes]), out_nodes, out_edges def get_bifurcation_nodes(graph: nx.Graph): # Vertex degree relates to the number of branches connected to a given node out_nodes = np.empty((1, 3)) bif_nodes_id = list() for node_num, deg in graph.degree: if deg > 1: bif_nodes_id.append(node_num) out_nodes = np.vstack([out_nodes, graph.nodes[node_num]['o']]) return out_nodes, bif_nodes_id def apply_displacement(pts_list: np.ndarray, interpolator: [RegularGridInterpolator, LinearNDInterpolator]): pts_list = pts_list.astype(np.float) ret_val = pts_list + interpolator(pts_list).squeeze() return ret_val def deform_graph(graph, dm_interpolator: [RegularGridInterpolator, LinearNDInterpolator]): def_graph = nx.Graph() for (start_node, end_node) in graph.edges(): edge = graph[start_node][end_node]['pts'] def_edge = apply_displacement(edge, dm_interpolator) def_start_node_pts = apply_displacement(graph.nodes[start_node]['pts'], dm_interpolator) def_end_node_pts = apply_displacement(graph.nodes[end_node]['pts'], dm_interpolator) def_start_node_o = apply_displacement(graph.nodes[start_node]['o'], dm_interpolator) def_end_node_o = apply_displacement(graph.nodes[end_node]['o'], dm_interpolator) def_graph.add_node(start_node, pts=def_start_node_pts, o=def_start_node_o) def_graph.add_node(end_node, pts=def_end_node_pts, o=def_end_node_o) def_graph.add_edge(start_node, end_node, pts=def_edge, weight=len(def_edge)) return def_graph def subsample_graph(graph: nx.Graph, num_samples=3): sub_graph = nx.Graph() for (start_node, end_node) in graph.edges(): edge = graph[start_node][end_node]['pts'] edge_len = edge.shape[0] sub_edge_len = (edge_len - 2) // num_samples # Do not count the pts corresponding to the nodes (-2) sub_edge = [edge[0]] include_last = bool((edge_len - 2) % num_samples) # Skip the last point, as this is too close to the node if sub_edge_len: idxs = np.arange(0, edge_len, num_samples)[1:] if include_last else np.arange(0, edge_len, num_samples)[1:-1] for i in idxs: sub_edge.append(edge[i]) sub_edge.append(edge[-1]) sub_edge = np.asarray(sub_edge) sub_graph.add_node(start_node, pts=graph.nodes[start_node]['pts'], o=graph.nodes[start_node]['o']) sub_graph.add_node(end_node, pts=graph.nodes[end_node]['pts'], o=graph.nodes[end_node]['o']) sub_graph.add_edge(start_node, end_node, pts=sub_edge, weight=len(sub_edge)) return sub_graph