import os, sys currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True' import numpy as np import tensorflow as tf import voxelmorph as vxm import neurite as ne from datetime import datetime import ddmr.utils.constants as C from ddmr.data_generator import DataGeneratorManager from ddmr.utils.misc import try_mkdir from ddmr.utils.nifti_utils import save_nifti from ddmr.networks import WeaklySupervised from ddmr.losses import HausdorffDistanceErosion from ddmr.layers import UncertaintyWeighting os.environ['CUDA_DEVICE_ORDER'] = C.DEV_ORDER os.environ['CUDA_VISIBLE_DEVICES'] = '0' # Check availability before running using 'nvidia-smi' C.TRAINING_DATASET = '/mnt/EncryptedData1/Users/javier/vessel_registration/sanity_dataset_vessels' C.BATCH_SIZE = 2 C.LIMIT_NUM_SAMPLES = None C.EPOCHS = 10000 # Load data # Build data generator data_generator = DataGeneratorManager(C.TRAINING_DATASET, C.BATCH_SIZE, True, C.LIMIT_NUM_SAMPLES, 1 - C.TRAINING_PERC, voxelmorph=True, segmentations=True) train_generator = data_generator.get_generator('train') validation_generator = data_generator.get_generator('validation') data_folder = '../train_3d_multiloss_segm_haus_dice_ncc_grad_203925-29012021' # Build model in_shape = train_generator.get_input_shape()[1:-1] enc_features = [16, 32, 32, 32, 32, 32]# const.ENCODER_FILTERS dec_features = [32, 32, 32, 32, 32, 32, 32, 16, 16]# const.ENCODER_FILTERS[::-1] nb_features = [enc_features, dec_features] vxm_model = WeaklySupervised(inshape=in_shape, all_labels=[1], nb_unet_features=nb_features, int_steps=5) vxm_model.load_weights(os.path.join(data_folder, 'checkpoints', 'best_model.h5'), by_name=True) # Get some samples and plot them sample = validation_generator[0] samp_id = 1 pred_img, pred_seg, pred_flow = vxm_model.predict([sample[0][0][samp_id, ...][np.newaxis, ...], sample[0][1][samp_id, ...][np.newaxis, ...], sample[0][2][samp_id, ...][np.newaxis, ...]]) save_nifti(np.squeeze(pred_img), os.path.join(data_folder, 'pred_img.nii.gz')) save_nifti(np.squeeze(pred_seg), os.path.join(data_folder, 'pred_seg.nii.gz')) save_nifti(sample[0][0][samp_id, ...], os.path.join(data_folder, 'mov_seg.nii.gz')) save_nifti(sample[0][1][samp_id, ...], os.path.join(data_folder, 'fix_seg.nii.gz')) save_nifti(sample[0][2][samp_id, ...], os.path.join(data_folder, 'mov_img.nii.gz')) save_nifti(sample[0][-2][samp_id, ...], os.path.join(data_folder, 'fix_img.nii.gz'))