import os, sys currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True' import numpy as np import tensorflow as tf from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard import voxelmorph as vxm import neurite as ne import h5py from datetime import datetime if PYCHARM_EXEC: import scripts.tf.myScript_constants as const from scripts.tf.myScript_data_generator import DataGeneratorManager from scripts.tf.myScript_utils import save_nifti, try_mkdir else: import myScript_constants as const from myScript_data_generator import DataGeneratorManager from myScript_utils import save_nifti, try_mkdir os.environ['CUDA_DEVICE_ORDER'] = const.DEV_ORDER os.environ['CUDA_VISIBLE_DEVICES'] = const.GPU_NUM # Check availability before running using 'nvidia-smi' const.TRAINING_DATASET = '/mnt/EncryptedData1/Users/javier/vessel_registration/sanity_dataset_LITS' const.BATCH_SIZE = 8 const.LIMIT_NUM_SAMPLES = None const.EPOCHS = 1000 if PYCHARM_EXEC: path_prefix = os.path.join('scripts', 'tf') else: path_prefix = '' # Load data # Build data generator data_generator = DataGeneratorManager(const.TRAINING_DATASET, const.BATCH_SIZE, True, const.LIMIT_NUM_SAMPLES, 1 - const.TRAINING_PERC, voxelmorph=True) test_generator = data_generator.get_generator('validation') test_fix_img, test_mov_img, *_ = test_generator.get_random_sample(1) # Build model in_shape = test_generator.get_input_shape()[1:-1] enc_features = [16, 32, 32, 32]# const.ENCODER_FILTERS dec_features = [32, 32, 32, 32, 32, 16, 16]# const.ENCODER_FILTERS[::-1] nb_features = [enc_features, dec_features] vxm_model = vxm.networks.VxmDense(inshape=in_shape, nb_unet_features=nb_features, int_steps=0) weight_files = [os.path.join(path_prefix, 'checkpoints', f) for f in os.listdir(os.path.join(path_prefix, 'checkpoints')) if 'weights' in f] weight_files.sort() pred_folder = os.path.join(path_prefix, 'predictions') try_mkdir(pred_folder) # Prepare the images fix_img = test_fix_img.squeeze() mid_slice_fix = [np.take(fix_img, fix_img.shape[d]//2, axis=d) for d in range(3)] mid_slice_fix[1] = np.rot90(mid_slice_fix[1], 1) mid_slice_fix[2] = np.rot90(mid_slice_fix[2], -1) mid_mov_slice = list() mid_disp_slice = list() # Due to slicing, it can happen that the last file is not tested. So include it always slice = 5 for f in weight_files[:-1:slice] + [weight_files[-1]]: name = os.path.split(f)[-1].split('.h5')[0] vxm_model.load_weights(f) pred_img, pred_disp = vxm_model.predict([test_mov_img, test_fix_img]) pred_img = pred_img.squeeze() mov_slices = [np.take(pred_img, pred_img.shape[d]//2, axis=d) for d in range(3)] mov_slices[1] = np.rot90(mov_slices[1], 1) mov_slices[2] = np.rot90(mov_slices[2], -1) mid_mov_slice.append(mov_slices) # Get sample for testing test_sample = test_generator.get_single_sample()