import tensorflow as tf import tensorflow.keras.backend as K import logging import numpy as np class RollingAverageWeighting(tf.keras.callbacks.Callback): def __init__(self, weights: list, loss_names: list, ref_loss: str, epoch_update): super(RollingAverageWeighting, self).__init__() assert len(weights) == len(loss_names) self.weights = weights self.loss_weights = dict() for name, w in zip(loss_names, weights): self.loss_weights[name] = w self.epoch_update = epoch_update - 1 # Epoch is zero based self.rolling_avg = dict() self.ref_loss = ref_loss loss_names.append(ref_loss) for name in loss_names: self.rolling_avg[name] = 0 def on_epoch_end(self, epoch, logs=None): # Get the average loss for each loss function if epoch > self.epoch_update: # Updated loss weights for i, name in enumerate(self.rolling_avg.keys()): # avg[n] = avg[n-1] + 1/n * (new_val - avg[n-1]), where n is the size of the rolling avg self.rolling_avg[name] += (1 / self.epoch_update) * (logs.get(name) - self.rolling_avg[name]) else: for i, name in enumerate(self.rolling_avg.keys()): self.rolling_avg[name] += logs.get(name) if epoch == self.epoch_update: # Time to start updating the weights! self.rolling_avg[name] /= self.epoch_update if not epoch % self.epoch_update: self.update_weights() def update_weights(self): new_weights = list() for name in self.loss_weights.keys(): K.set_value(self.loss_weights[name], self.rolling_avg[self.ref_loss] / self.rolling_avg[name]) new_weights.append(self.rolling_avg[self.ref_loss] / self.rolling_avg[name]) out_str = '' for name, val in zip(self.loss_weights.keys(), new_weights): out_str += '{}: {:7.2f}\t'.format(name, val) print('WEIGHTS UPDATE: ' + out_str) class UncertaintyWeightingRollingAverageCallback(tf.keras.callbacks.Callback): def __init__(self, method, epoch_update): super(UncertaintyWeightingRollingAverageCallback, self).__init__() self.method = method self.epoch_update = epoch_update def on_epoch_end(self, epoch, logs=None): if epoch > self.epoch_update: self.method() print('Calling method: '+self.method.__name__)