import tensorflow as tf import tensorflow.keras.backend as K from scipy.ndimage import generate_binary_structure from sklearn.utils.extmath import cartesian from ddmr.utils.operators import soft_threshold, min_max_norm, hard_threshold from ddmr.utils.constants import EPS_tf from ddmr.utils.misc import function_decorator import numpy as np import warnings class HausdorffDistanceErosion: def __init__(self, ndim=3, nerosion=10, im_shape: [list, tuple] = (64, 64, 64, 1), alpha=2): """ Approximation of the Hausdorff distance based on erosion operations based on the work done by Karimi D., et al. Karimi D., et al., "Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural Networks". IEEE Transactions on Medical Imaging, 39, 2020. DOI 10.1109/TMI.2019.2930068 :param ndim: Dimensionality of the images :param nerosion: Number of erosion steps. Defaults to 10. :param alpha: Parameter to penalize large segmentations. Defaults to 2 """ assert len(im_shape) == ndim + 1, "im_shape does not match with ndim. Missing channel dimension?" self.ndims = ndim axes = np.arange(0, self.ndims).tolist() self.before_erosion_transp = [axes[-1], *axes[:-1]] # [H, W, ..., C] -> [C, H, W, ...] self.after_erosion_transp = [*axes[1:], axes[0]] # [C, H, W, ...] -> [H, W, ..., C] self.nerosions = nerosion self.sum_range = tf.range(0, self.ndims) self.im_shape = im_shape self.im_vol = np.prod(im_shape[:-1]) kernel = generate_binary_structure(self.ndims, 1).astype(int) kernel = kernel / np.sum(kernel) kernel = kernel[..., np.newaxis, np.newaxis] self.kernel = tf.convert_to_tensor(kernel, tf.float32) self.k_alpha = [np.power(k, alpha).astype(float) for k in range(1, nerosion + 1)] self.conv = getattr(tf.nn, 'conv%dd' % self.ndims) def _erode(self, in_tensor): indiv_channels = tf.split(in_tensor, self.im_shape[-1], -1) res = list() with tf.compat.v1.variable_scope('erode', reuse=tf.AUTO_REUSE): for ch in indiv_channels: res.append(self.conv(tf.expand_dims(ch, 0), self.kernel, [1] * (self.ndims + 2), 'SAME')) # out = -tf.nn.max_pool3d(-tf.expand_dims(in_tensor, 0), [3]*self.ndims, [1]*self.ndims, 'SAME', name='HDE_erosion') out = tf.concat(res, -1) out = tf.squeeze(out, axis=0) out = hard_threshold(out, 0.5, name='thresholding') # soft_threshold(out, 0.5, name='thresholding') return out def _erosion_distance_single(self, y_true, y_pred): diff = tf.math.pow(y_pred - y_true, 2, name='HDE_diff') alpha = 2 ret = 0. for k in range(1, self.nerosions+1): er = diff # k successive erosions for j in range(k): er = self._erode(er) # er contains the eroded version along the channels ret += tf.reduce_sum(tf.multiply(er, self.k_alpha[k - 1]), self.sum_range, name='HDE_ret') return tf.divide(ret, self.im_vol) # Divide by the image size @function_decorator('Hausdorff_erosion__loss') def loss(self, y_true, y_pred, name='HDE_loss'): batched_dist = tf.map_fn(lambda x: self._erosion_distance_single(x[0], x[1]), (y_true, y_pred), dtype=tf.float32, name=name+'_map_fn') return tf.reduce_mean(batched_dist) @function_decorator('Hausdorff_erosion__metric') def metric(self, y_true, y_pred): return self.loss(y_true, y_pred, name='HDE_metric') def debug(self, y_true, y_pred): return tf.map_fn(lambda x: self._erosion_distance_single(x[0], x[1]), (y_true, y_pred), dtype=tf.float32, name='HDE_loss_map_fn') # class HausdorffDiatanceConvolution: # def __init__(self, ndim=3, im_shape: tuple = (64, 64, 64, 1), max_kernel_size=9, step_kernel_size=3, alpha=2): # """ # Approximation of the Hausdorff distance based on erosion operations based on the work done by Karimi D., et al. # Karimi D., et al., "Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural # Networks". IEEE Transactions on Medical Imaging, 39, 2020. DOI 10.1109/TMI.2019.2930068 # # :param ndim: Dimensionality of the images # :param nerosion: Number of erosion steps. Defaults to 10. # :param alpha: Parameter to penalize large segmentations. Defaults to 2 # """ # assert len(im_shape) == ndim + 1, "im_shape does not match with ndim. Missing channel dimension?" # self.ndims = ndim # axes = np.arange(0, self.ndims).tolist() # self.before_erosion_transp = [axes[-1], *axes[:-1]] # [H, W, ..., C] -> [C, H, W, ...] # self.after_erosion_transp = [*axes[1:], axes[0]] # [C, H, W, ...] -> [H, W, ..., C] # self.conv = getattr(tf.nn, 'conv%dd' % self.ndims) # self.sum_range = tf.range(0, self.ndims) # # self.im_shape = im_shape # self.im_vol = np.prod(im_shape[:-1]) # kernel = generate_binary_structure(self.ndims, 1).astype(int) # self.kernel = tf.constant(kernel / np.sum(kernel), tf.float32) # self.kernel = tf.expand_dims(tf.expand_dims(self.kernel, -1), -1) # [H, W, D, C_in, C_out] # self.kernel = tf.tile(self.kernel, [*[1]*self.ndims, self.im_shape[-1], self.im_shape[-1]]) # self.alpha = int(alpha) # self.radii = np.arange(1, max_kernel_size, step=step_kernel_size) # self.radii_alpha = [np.pow(r, alpha).astype(float) for r in self.radii] # # def soft_diff(self, p, q): # return tf.multiply(tf.pow(p - q, 2.), q) # # def body(self, y_true, y_pred): # """ class HausdorffDistanceErosion_2: def __init__(self, im_shape, num_erosions, num_dimensions=3, alpha=2., loop_max_iterations=20): self.alpha = alpha self.ndims = num_dimensions self.conv = getattr(tf.nn, 'conv%dd' % self.ndims) self.iterator = tf.constant(num_erosions, name='num_erosions') self.norm = 1 / np.prod(im_shape) self.erosion_kernel = generate_binary_structure(self.ndims, 1).astype(float) self.erosion_kernel /= np.sum(self.erosion_kernel) self.erosion_kernel = tf.constant( self.erosion_kernel, tf.float32) self.loop_max_iterations = loop_max_iterations def erosion_sum(self, p, q, k): er_tensor = p - q er_tensor = tf.pow(er_tensor, 2.) def erode(in_tensor): # Erosion of in_tensor = Dilation of (1 - in_tensor) return self.conv(tf.expand_dims(1. - in_tensor, 0), self.erosion_kernel, [1] * (self.ndims + 2), 'SAME') def while_loop_body(i, in_tensor): in_tensor = erode(in_tensor) i -= 1 return i, in_tensor def while_loop_condition(i, in_tensor): return tf.less_equal(i, 1), in_tensor er_iterator = tf.constant(k) _, er_tensor = tf.while_loop(while_loop_condition, while_loop_body, loop_vars=[er_iterator, er_tensor], maximum_iterations=self.loop_max_iterations) er_tensor *= tf.pow(k, self.alpha) return tf.reduce_sum(er_tensor) def loss(self, y_true, y_pred): hd_distance = tf.constant(0, name='hausdroff_distance') def while_loop_body(i, p, q, ret): i -= 1 return i, p, q, ret + self.erosion_sum(p, q, i) _, _, _, hd_distance = tf.while_loop(lambda i, p, q, ret: tf.less_equal(i, 1), while_loop_body, loop_vars=[self.iterator, y_pred, y_true, hd_distance]) hd_distance /= self.norm return hd_distance """ class WeightedHausdorffDistance: def __init__(self, input_shape, alpha=-1, threshold=0.5): """ WARNING: Requires a insane amount of memory :param input_shape: [H, W, D, C] or [H, W, C] :param alpha: Parameter of the generalized mean. Ideally -inf, but then the function becomes less smooth. :param threshold: Threshold of segmentations, used in tf.where function """ warnings.warn("This function requires an insane amount of memory") self.input_shape = input_shape self.dim = len(input_shape[:-1]) self.ohe_segm = bool(input_shape[-1] > 1) # One-Hot Encoded segmentations on the channel axis aux = np.arange(len(self.input_shape)).tolist() self.ohe_transpose = [aux[-1], *aux[:-1]] self.alpha = alpha self.threshold = threshold list_coords = [np.arange(c) for c in self.input_shape[:-1]] self.img_loc = tf.convert_to_tensor(cartesian(list_coords), dtype=tf.float32) self.max_dist = np.sqrt(np.sum(np.square(self.input_shape[:-1]))) # Largest diagonal def pairwise_distance(self, A, B): sq_norm_a = tf.reduce_sum(tf.square(A), 1) sq_norm_b = tf.reduce_sum(tf.square(B), 1) sq_norm_a = tf.reshape(sq_norm_a, [-1, 1]) sq_norm_b = tf.reshape(sq_norm_b, [1, -1]) return tf.sqrt(tf.maximum(sq_norm_a - 2 * tf.matmul(A, B, transpose_a=False, transpose_b=True) + sq_norm_b, 0.)) def hausdorff(self, y_true, y_pred): if self.ohe_segm: y_true = tf.transpose(y_true, self.ohe_transpose) y_pred = tf.transpose(y_pred, self.ohe_transpose) hausdorff_per_ch = tf.map_fn(lambda x: self.hausdorff_per_channel(x[0], x[1]), (y_true, y_pred), tf.float32) return tf.reduce_mean(hausdorff_per_ch) else: return self.hausdorff_per_channel(y_true, y_pred) def hausdorff_per_channel(self, y_true, y_pred): Y = tf.cast(tf.where(y_true > self.threshold), dtype=tf.float32) p = K.flatten(y_pred) # Flatten the predicted segmentation (activation map 'p' in d_WH) size_Y = tf.shape(Y)[0] S = tf.reduce_sum(p) p = tf.squeeze(K.repeat(tf.expand_dims(p, -1), size_Y)) dist_mat = self.pairwise_distance(self.img_loc, Y) term_1 = tf.reduce_sum(p * tf.minimum(dist_mat, 1)) / (S + EPS_tf) term_2 = tf.minimum((dist_mat + EPS_tf) / (tf.pow(p, self.alpha) + (EPS_tf / self.max_dist)), 0.) term_2 = tf.clip_by_value(term_2, 0., self.max_dist) term_2 = tf.reduce_mean(term_2, axis=0) return term_1 + term_2 @function_decorator('Weighted_Hausdorff__loss') def loss(self, y_true, y_pred): batch_hdist = tf.map_fn(lambda x: self.hausdorff(x[0], x[1]), (y_true, y_pred), dtype=tf.float32) return tf.reduce_mean(batch_hdist) @function_decorator('Weighted_Hausdorff__metric') def metric(self, y_true, y_pred): return self.loss(y_true, y_pred) class NCC: def __init__(self, in_shape, eps=EPS_tf): self.__shape_size = tf.cast(tf.reduce_prod(in_shape), tf.float32) self.__eps = eps def ncc(self, y_true, y_pred): f_yt = tf.reshape(y_true, [-1]) f_yp = tf.reshape(y_pred, [-1]) mean_yt = tf.reduce_mean(f_yt) mean_yp = tf.reduce_mean(f_yp) n_f_yt = f_yt - mean_yt n_f_yp = f_yp - mean_yp norm_yt = tf.norm(f_yt, ord='euclidean') norm_yp = tf.norm(f_yp, ord='euclidean') numerator = tf.reduce_sum(tf.multiply(n_f_yt, n_f_yp)) denominator = norm_yt * norm_yp + self.__eps return tf.math.divide_no_nan(numerator, denominator) @function_decorator('NCC__loss') def loss(self, y_true, y_pred): # According to the documentation, the loss returns a scalar # Ref: https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile return tf.reduce_mean(tf.map_fn(lambda x: 1 - self.ncc(x[0], x[1]), (y_true, y_pred), tf.float32)) @function_decorator('NCC__metric') def metric(self, y_true, y_pred): return tf.reduce_mean(tf.map_fn(lambda x: self.ncc(x[0], x[1]), (y_true, y_pred), tf.float32)) def ncc(y_true, y_pred): y_true = K.flatten(K.cast(y_true, 'float32')) y_pred = K.flatten(K.cast(y_pred, 'float32')) mean_true = K.mean(y_true) mean_pred = K.mean(y_pred) std_true = K.std(y_true) std_pred = K.std(y_pred) num = K.mean((y_true - mean_true) * (y_pred - mean_pred)) den = std_true * std_pred + EPS_tf batch_ncc = num / den return K.mean(batch_ncc) class StructuralSimilarity: # Based on https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/losses/dssim.py def __init__(self, k1=0.01, k2=0.03, patch_size=32, dynamic_range=1., overlap=0.0, dim=3, alpha=1., beta=1., gamma=1., **kwargs): """ Structural (Di)Similarity Index Measure: :param k1: Internal parameter. Defaults to 0.01 :param k2: Internal parameter. Defaults to 0.02 :param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size. :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1. :param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0. :param dim: Data dimensionality. Must be {1, 2, 3}. Defaults to 3. :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and structure measures. Default to 1. """ assert (dim > 0) and (dim < 4), 'Invalid dimension. It must be 1, 2, or 3' assert overlap < 1., 'Invalid overlap. It must be in the range [0., 1.)' self.c1 = (k1 * dynamic_range) ** 2 self.c2 = (k2 * dynamic_range) ** 2 self.c3 = self.c2 / 2 self.alpha = tf.cast(alpha, tf.float32) self.beta = tf.cast(beta, tf.float32) self.gamma = tf.cast(gamma, tf.float32) self.kernel_shape = [1] + [patch_size] * dim + [1] stride = int(patch_size * (1 - overlap)) self.stride = [1] + [stride if stride else 1] * dim + [1] self.dim = dim self.patch_extractor = None self.reduce_axis = list() if dim == 2: self.patch_extractor = tf.extract_image_patches self.reduce_axis = [1, 2] elif dim == 3: self.patch_extractor = tf.extract_volume_patches self.reduce_axis = [1, 2, 3] else: raise ValueError('Invalid dimension value. Expected 2 or 3') if patch_size == -1: # Don't extract patches self.dim = 1 self.L = None # Luminance self.C = None # Contrast self.S = None # Structure def __int_shape(self, x): return tf.keras.backend.int_shape(x) if tf.keras.backend.backend() == 'tensorflow' else tf.keras.backend.shape(x) def ssim(self, y_true, y_pred): if self.dim > 1: # Don't use for training. The gradient doesn't backpropagate through the patch extractors # patches: [B, out_rows, out_cols, ..., krows*kcols*...*channels] -> out_rows * out_cols * ... = nb patches patches_true = self.patch_extractor(y_true, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_true') patches_pred = self.patch_extractor(y_pred, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_pred') else: patches_true = y_true patches_pred = y_pred #bs, w, h, d, *c = self.__int_shape(patches_pred) #patches_true = tf.reshape(patches_true, [-1, w, h, d, tf.reduce_prod(c)]) #patches_pred = tf.reshape(patches_pred, [-1, w, h, d, tf.reduce_prod(c)]) # Mean u_true = tf.reduce_mean(patches_true, axis=-1) u_pred = tf.reduce_mean(patches_pred, axis=-1) # Variance v_true = tf.math.reduce_variance(patches_true, axis=-1) v_pred = tf.math.reduce_variance(patches_pred, axis=-1) # Standard dev. s_true = tf.sqrt(v_true) s_pred = tf.sqrt(v_pred) # Covariance covar = tf.reduce_mean(patches_true * patches_pred, axis=-1) - u_true * u_pred # SSIM self.L = (2 * u_true * u_pred + self.c1) / (tf.square(u_true) + tf.square(u_pred) + self.c1) self.C = (2 * s_true * s_pred + self.c2) / (v_true + v_pred + self.c2) self.S = (covar + self.c3) / (s_true * s_pred + self.c3) self.L = tf.reduce_mean(self.L, axis=self.reduce_axis) self.C = tf.reduce_mean(self.C, axis=self.reduce_axis) self.S = tf.reduce_mean(self.S, axis=self.reduce_axis) return tf.pow(self.L, self.alpha) * tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma) @function_decorator('SSIM__loss') def loss(self, y_true, y_pred): return tf.reduce_mean((1. - self.ssim(y_true, y_pred)) / 2.0) @function_decorator('SSIM__metric') def metric(self, y_true, y_pred): return tf.reduce_mean(self.ssim(y_true, y_pred)) class StructuralSimilarity_simplified: # Based on https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/losses/dssim.py def __init__(self, k1=0.01, k2=0.03, patch_size=32, dynamic_range=1., overlap=0.0, dim=3, alpha=1., beta=1., gamma=1., **kwargs): """ Structural (Di)Similarity Index Measure: :param k1: Internal parameter. Defaults to 0.01 :param k2: Internal parameter. Defaults to 0.02 :param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size. :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1. :param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0. :param dim: Data dimensionality. Must be {1, 2, 3}. Defaults to 3. :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and structure measures. Default to 1. """ assert (dim > 0) and (dim < 4), 'Invalid dimension. It must be 1, 2, or 3' assert overlap < 1., 'Invalid overlap. It must be in the range [0., 1.)' self.c1 = (k1 * dynamic_range) ** 2 self.c2 = (k2 * dynamic_range) ** 2 self.c3 = self.c2 / 2 self.alpha = tf.cast(alpha, tf.float32) self.beta = tf.cast(beta, tf.float32) self.gamma = tf.cast(gamma, tf.float32) self.kernel_shape = [1] + [patch_size] * dim + [1] stride = int(patch_size * (1 - overlap)) self.stride = [1] + [stride if stride else 1] * dim + [1] self.dim = dim self.patch_extractor = None if dim == 2: self.patch_extractor = tf.extract_image_patches elif dim == 3: self.patch_extractor = tf.extract_volume_patches if patch_size == -1: # Don't extract patches self.dim = 1 self.L = None # Luminance self.C = None # Contrast self.S = None # Structure def __int_shape(self, x): return tf.keras.backend.int_shape(x) if tf.keras.backend.backend() == 'tensorflow' else tf.keras.backend.shape(x) def ssim(self, y_true, y_pred): if self.dim > 1: # Don't use for training. The gradient doesn't backpropagate through the patch extractors # patches: [B, out_rows, out_cols, ..., krows*kcols*...*channels] -> out_rows * out_cols * ... = nb patches patches_true = self.patch_extractor(y_true, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_true') patches_pred = self.patch_extractor(y_pred, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_pred') else: patches_true = y_true patches_pred = y_pred #bs, w, h, d, *c = self.__int_shape(patches_pred) #patches_true = tf.reshape(patches_true, [-1, w, h, d, tf.reduce_prod(c)]) #patches_pred = tf.reshape(patches_pred, [-1, w, h, d, tf.reduce_prod(c)]) # Mean u_true = tf.reduce_mean(patches_true, axis=-1) u_pred = tf.reduce_mean(patches_pred, axis=-1) # Variance v_true = tf.math.reduce_variance(patches_true, axis=-1) v_pred = tf.math.reduce_variance(patches_pred, axis=-1) # Covariance covar = tf.reduce_mean(patches_true * patches_pred, axis=-1) - u_true * u_pred # return tf.pow(self.L, self.alpha) * tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma) num = (2 * u_true * u_pred + self.c1) * (2 * covar + self.c2) den = ((tf.square(u_true) + tf.square(u_pred) + self.c1) * (v_pred + v_true + self.c2)) return num / den @function_decorator('SSIM_simple__loss') def loss(self, y_true, y_pred): return tf.reduce_mean((1. - self.ssim(y_true, y_pred)) / 2.0) @function_decorator('SSIM_simple__metric') def metric(self, y_true, y_pred): return tf.reduce_mean(self.ssim(y_true, y_pred)) class MultiScaleStructuralSimilarity(StructuralSimilarity): def __init__(self, k1=0.01, k2=0.03, patch_size=3, dynamic_range=1., overlap=0.0, dim=3, nscales=3, alpha=1., beta=1., gamma=1.): """ Multi Scale Structural (Di)Similarity Index Measure: Ref: [1] https://www.cns.nyu.edu/pub/eero/wang03b.pdf :param k1: Internal parameter. Defaults to 0.01 :param k2: Internal parameter. Defaults to 0.02 :param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size. :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1. :param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0. :param dim: Data dimensionality. Must be {2, 3}. Defaults to 3. :param nscales: Number of scales to analyze. Defaults to 3. :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and structure measures. Default to 1. """ assert dim > 1, 'Cannot be used with 1-D data' super(MultiScaleStructuralSimilarity, self).__init__(k1=k1, k2=k2, patch_size=patch_size, dynamic_range=dynamic_range, overlap=overlap, dim=dim, alpha=alpha, beta=beta, gamma=gamma) self.num_scales = nscales self.avg_pool = getattr(tf.nn, 'avg_pool%dd' % dim) self.ds_stride = self.ds_kernel = [1] + [2]*dim + [1] # In [1] these are set to the same value at the same scales and normalized across scales self.alpha = self.beta = self.gamma = 1 / nscales def _cond(self, cs_prod, scale_level, y_true, y_pred): return tf.less_equal(scale_level, self.num_scales) def _iteration(self, cs_prod, scale_level, y_true, y_pred): super(MultiScaleStructuralSimilarity, self).ssim(y_true, y_pred) cs_prod *= tf.reduce_mean(tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma)) y_true = self.avg_pool(y_true, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID') y_pred = self.avg_pool(y_pred, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID') scale_level += 1 return cs_prod, scale_level, y_true, y_pred, def ssim(self, y_true, y_pred): return self.ms_ssim(y_true, y_pred) def ms_ssim(self, y_true, y_pred): cs_prod = tf.constant(1.) scale_level = tf.constant(1.) cs_prod, *_ = tf.while_loop(self._cond, self._iteration, (cs_prod, scale_level, y_true, y_pred), (cs_prod.get_shape(), scale_level.get_shape(), tf.TensorShape(([1] + [None] * self.dim + [1])), tf.TensorShape(([1] + [None] * self.dim + [1])))) ms_ssim = tf.reduce_mean(tf.pow(self.L, self.alpha)) * cs_prod return tf.reduce_mean(ms_ssim) @function_decorator('MS_SSIM__loss') def loss(self, y_true, y_pred): return tf.reduce_mean((1. - self.ms_ssim(y_true, y_pred)) / 2.0) class MultiScaleStructuralSimilarity_v2(StructuralSimilarity): def __init__(self, k1=0.01, k2=0.03, patch_size=3, dynamic_range=1., overlap=0.0, dim=3, nscales=3, alpha=1., beta=1., gamma=1.): """ Multi Scale Structural (Di)Similarity Index Measure: Ref: [1] https://www.cns.nyu.edu/pub/eero/wang03b.pdf :param k1: Internal parameter. Defaults to 0.01 :param k2: Internal parameter. Defaults to 0.02 :param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size. :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1. :param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0. :param dim: Data dimensionality. Must be {2, 3}. Defaults to 3. :param nscales: Number of scales to analyze. Defaults to 3. :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and structure measures. Default to 1. """ assert dim > 1, 'Cannot be used with 1-D data' super(MultiScaleStructuralSimilarity_v2, self).__init__(k1=k1, k2=k2, patch_size=patch_size, dynamic_range=dynamic_range, overlap=overlap, dim=dim, alpha=alpha, beta=beta, gamma=gamma) self.num_scales = nscales self.avg_pool = getattr(tf.nn, 'avg_pool%dd' % dim) self.ds_stride = self.ds_kernel = [1] + [2]*dim + [1] # In [1] these are set to the same value at the same scales and normalized across scales self.alpha = self.beta = self.gamma = 1 / nscales def _cond(self, cs_prod, scale_level, y_true, y_pred): return tf.less_equal(scale_level, self.num_scales) def _iteration(self, cs_prod, scale_level, y_true, y_pred): super(MultiScaleStructuralSimilarity_v2, self).ssim(y_true, y_pred) cs_prod *= tf.reduce_mean(tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma)) y_true = self.avg_pool(y_true, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID') y_pred = self.avg_pool(y_pred, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID') scale_level += 1 return cs_prod, scale_level, y_true, y_pred, def ssim(self, y_true, y_pred): return self.ms_ssim(y_true, y_pred) def ms_ssim(self, y_true, y_pred): cs_prod = tf.constant(1.) scale_level = tf.constant(1.) cs_prod, *_ = tf.while_loop(self._cond, self._iteration, (cs_prod, scale_level, y_true, y_pred), (cs_prod.get_shape(), scale_level.get_shape(), tf.TensorShape(([1] + [None] * self.dim + [1])), tf.TensorShape(([1] + [None] * self.dim + [1])))) ms_ssim = tf.reduce_mean(tf.pow(self.L, self.alpha)) * cs_prod return tf.reduce_mean(ms_ssim) @function_decorator('MS_SSIM_v2__loss') def loss(self, y_true, y_pred): return tf.reduce_mean((1. - self.ms_ssim(y_true, y_pred)) / 2.0) class StructuralSimilarityGaussian: # This is equivalent to StructuralSimilarity(patch_size=img_size) def __init__(self, k1=0.01, k2=0.03, dynamic_range=1., gauss_sigma=5., dim=3, alpha=1., beta=1., gamma=1.): """ SSIM using Gaussian filter to approximate the statistics of the images Ref: https://www.cns.nyu.edu/pub/eero/wang03b.pdf https://arxiv.org/pdf/1511.08861.pdf https://github.com/NVlabs/PL4NN/blob/master/src/loss.py :param k1: Internal parameter. Defaults to 0.01 :param k2: Internal parameter. Defaults to 0.02 :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1. :param gauss_sigma: Sigma of the Gaussian filter. Defaults to 1.5. :param dim: Data dimensionality. Must be {2, 3}. Defaults to 3. :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and structure measures. Default to 1. """ self.c1 = (k1 * dynamic_range) ** 2 self.c2 = (k2 * dynamic_range) ** 2 self.c3 = self.c2 / 2 self.alpha = tf.cast(alpha, tf.float32) self.beta = tf.cast(beta, tf.float32) self.gamma = tf.cast(gamma, tf.float32) self.dim = dim self.convDN = getattr(tf.nn, 'conv%dd' % dim) self.sigma = gauss_sigma def build_gaussian_filter(self, size, sigma, num_channels=1): range_1d = tf.range(-(size/2) + 1, size//2 + 1) g_1d = tf.math.exp(-1.0 * tf.pow(range_1d, 2) / (2. * tf.pow(sigma, 2))) g_1d_expanded = tf.expand_dims(g_1d, -1) iterator = tf.constant(1) self.__GF = tf.while_loop(lambda iterator, g_1d: tf.less(iterator, self.dim), lambda iterator, g_1d: (iterator + 1, tf.expand_dims(g_1d, -1) * tf.transpose(g_1d_expanded)), [iterator, g_1d], [iterator.get_shape(), tf.TensorShape([None]*self.dim)], # Shape invariants back_prop=False, )[-1] self.__GF = tf.divide(self.__GF, tf.reduce_sum(self.__GF)) # Normalization self.__GF = tf.reshape(self.__GF, (*[size]*self.dim, 1, 1)) # Add Ch_in and Ch_out for convolution self.__GF = tf.tile(self.__GF, (*[1] * self.dim, num_channels, num_channels,)) def format_data(self, in_data): ret_val = in_data if self.dim == 3: ret_val = tf.transpose(ret_val, [0, 3, 1, 2, 4]) return ret_val def ssim(self, y_true, y_pred): self.build_gaussian_filter(y_pred.shape[1], self.sigma) y_true_tr = self.format_data(y_true) y_pred_tr = self.format_data(y_pred) u_true = self.convDN(y_true_tr, self.__GF, [1] * (self.dim + 2), 'SAME') u_pred = self.convDN(y_pred_tr, self.__GF, [1] * (self.dim + 2), 'SAME') v_true = self.convDN(tf.pow(y_true_tr, 2), self.__GF, [1] * (self.dim + 2), 'SAME') - tf.pow(u_true, 2) v_pred = self.convDN(tf.pow(y_pred_tr, 2), self.__GF, [1] * (self.dim + 2), 'SAME') - tf.pow(u_pred, 2) covar = self.convDN(tf.multiply(y_true_tr, y_pred_tr), self.__GF, [1] * (self.dim + 2), 'SAME') - u_true * u_pred self.L = (2 * u_true * u_pred + self.c1) / (tf.square(u_true) + tf.square(u_pred) + self.c1) self.C = (2 * tf.sqrt(v_true) * tf.sqrt(v_pred) + self.c2) / (v_true + v_pred + self.c2) self.S = (covar + self.c3) / (tf.sqrt(v_true) * tf.sqrt(v_pred) + self.c3) ssim = tf.pow(self.L, self.alpha) * tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma) return tf.reduce_mean(ssim) @function_decorator('SSIM_Gaus__loss') def loss(self, y_true, y_pred): return tf.reduce_mean((1. - self.ssim(y_true, y_pred))/2.) @function_decorator('SSIM_Gaus__metric') def metric(self, y_true, y_pred): return tf.reduce_mean(self.ssim(y_true, y_pred)) class MultiScaleStructuralSimilarityGaussian(StructuralSimilarityGaussian): def __init__(self, k1=0.01, k2=0.03, dynamic_range=1., gauss_sigma=5., dim=3, nscales=3, alpha=1., beta=1., gamma=1.): """ Multi Scale SSIM inheriting from StructuralSimilarityGaussian classed Ref: https://www.cns.nyu.edu/pub/eero/wang03b.pdf https://arxiv.org/pdf/1511.08861.pdf https://github.com/NVlabs/PL4NN/blob/master/src/loss.py :param k1: Internal parameter. Defaults to 0.01 :param k2: Internal parameter. Defaults to 0.02 :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1. :param gauss_sigma: Sigma of the Gaussian filter. Defaults to 1.5. :param dim: Data dimensionality. Must be {2, 3}. Defaults to 3. :param nscales: Number of scales to analyze. Defaults to 3. :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and structure measures. Default to 1. """ super(MultiScaleStructuralSimilarityGaussian, self).__init__(k1=k1, k2=k2, dynamic_range=dynamic_range, gauss_sigma=gauss_sigma, dim=dim, alpha=alpha, beta=beta, gamma=gamma) self.__num_scales = nscales # # If using the Gaussian approximation of the pyramid MS approach described in https://arxiv.org/pdf/1511.08861.pdf # def build_sigma_scales(self): # iterator = tf.constant(0) # scales = tf.expand_dims(self.sigma, -1) # last_sigma = scales # self.sigma_scales = tf.while_loop(lambda iterator, last_sigma, scales: tf.less_equal(iterator, self.__num_scales), # lambda iterator, last_sigma, scales: (iterator + 1, tf.concat([scales, last_sigma/2], 0), last_sigma/2), # [iterator, last_sigma, scales])[-1] # # def build_gaussian_filters_scales(self, size): # self.__GFS = tf.map_fn(lambda sigma: self.build_gaussian_filter(size, sigma), self.sigma, tf.float32) def _iteration(self, cs_prod, scale_level, y_true, y_pred): # Compute the SSIM, so CS and L have the correct value self.ssim(y_true, y_pred) cs_prod *= tf.reduce_mean(tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma)) scale_level += 1 # Downsample the images to half the resolution for the next iteration y_true = tf.nn.avg_pool(y_true, [1] + [2]*self.dim + [1], [1] + [2]*self.dim + [1], 'SAME') y_pred = tf.nn.avg_pool(y_true, [1] + [2]*self.dim + [1], [1] + [2]*self.dim + [1], 'SAME') return cs_prod, scale_level, y_true, y_pred def ms_ssim(self, y_true, y_pred): scale_level = tf.constant(0.) cs_prod = tf.constant(1.) cs_prod, *_ = tf.while_loop(tf.less(scale_level, self.__num_scales), self._iteration, (cs_prod, scale_level, y_true, y_pred), (cs_prod.get_shape(), scale_level.get_shape(), tf.TensorShape(([1] + [None]*self.dim + [1])), tf.TensorShape(([1] + [None]*self.dim + [1])))) # L is taken from the last scale return tf.reduce_mean(tf.pow(self.L, self.alfa)) * cs_prod @function_decorator('MS_SSIM_Gaus__metric') def loss(self, y_true, y_pred): return tf.reduce_mean((1. - self.ms_ssim(y_true, y_pred))/2.) class DICEScore: def __init__(self, input_shape: list): """ DICE Score. :param input_shape: Shape of the input image, without the batch dimension, e.g., 2D: [H, W, C], 3D: [H, W, D, C] """ self.axes = list(range(1, len(input_shape))) # The list will not include the channel axis [1, ..., num_dims) def dice(self, y_true, y_pred): numerator = 2 * tf.reduce_sum(y_true * y_pred, self.axes) denominator = tf.reduce_sum(y_true + y_pred, self.axes) return tf.reduce_mean(tf.div_no_nan(numerator, denominator)) @function_decorator('DICE__loss') def loss(self, y_true, y_pred): return 1 - 2 * tf.reduce_mean(self.dice(y_true, y_pred)) @function_decorator('DICE__metric') def metric(self, y_true, y_pred): return tf.reduce_mean(self.dice(y_true, y_pred)) class GeneralizedDICEScore: def __init__(self, input_shape: list, num_labels: int=None): """ Generalized DICE Score. Implementation based on Carole H. Sudre, et al., "Generalised DIce Overlap as a Deep Learning Los Function for Highly Unbalanced Segmentations" https://arxiv.org/abs/1707.03237 :param input_shape: Shape of the input image, without the batch dimension, e.g., 2D: [H, W, C], 3D: [H, W, D, C] """ self.smooth = 1e-10 # If y_pred = y_true = null -> dice should be 1 self.num_labels = num_labels if input_shape[-1] > 1: try: self.flat_shape = [-1, np.prod(np.asarray(input_shape[:-1])), input_shape[-1]] except TypeError as err: self.flat_shape = [-1, None, input_shape[-1]] self.cardinal_encoded = False elif num_labels is not None: try: self.flat_shape = [-1, np.prod(np.asarray(input_shape[:-1])), input_shape[-1]] except TypeError as err: self.flat_shape = [-1, None, input_shape[-1]] self.cardinal_enc_shape = [-1, *input_shape[:-1]] self.cardinal_encoded = True warnings.warn('Differentiable cardinal encoding not yet implemented') else: raise ValueError('If input_shape does not correspond to cardinally encoded,' 'then num_labels must be provided') def one_hot_encoding(self, in_img, name=''): # TODO: Test if differentiable! labels, indices = tf.unique(tf.reshape(in_img, [-1]), tf.int32, name=name+'_unique') one_hot = tf.one_hot(indices, self.num_labels, name=name + '_one_hot') one_hot = tf.reshape(one_hot, self.cardinal_enc_shape + [self.num_labels], name=name + '_reshape') one_hot = tf.slice(one_hot, [0] * len(self.cardinal_enc_shape) + [1], [-1] * (len(self.cardinal_enc_shape) + 1), name=name + '_remove_bg') return one_hot def weigthed_dice(self, y_true, y_pred): # y_true = [B, -1, L] # y_pred = [B, -1, L] # if self.cardinal_encoded: # y_true = self.one_hot_encoding(y_true, name='GDICE_one_hot_encoding_y_true') # y_pred = self.one_hot_encoding(y_pred, name='GDICE_one_hot_encoding_y_pred') y_true = tf.reshape(y_true, self.flat_shape, name='GDICE_reshape_y_true') # Flatten along the volume dimensions y_pred = tf.reshape(y_pred, self.flat_shape, name='GDICE_reshape_y_pred') # Flatten along the volume dimensions size_y_true = tf.reduce_sum(y_true, axis=1, name='GDICE_size_y_true') size_y_pred = tf.reduce_sum(y_pred, axis=1, name='GDICE_size_y_pred') w = tf.math.divide_no_nan(1., tf.pow(size_y_true, 2), name='GDICE_weight') numerator = w * tf.reduce_sum(y_true * y_pred, axis=1) denominator = w * (size_y_true + size_y_pred) return tf.div_no_nan(2 * tf.reduce_sum(numerator, axis=-1) + self.smooth, tf.reduce_sum(denominator, axis=-1) + self.smooth) def macro_dice(self, y_true, y_pred): # y_true = [B, -1, L] # y_pred = [B, -1, L] # if self.cardinal_encoded: # y_true = self.one_hot_encoding(y_true, name='GDICE_one_hot_encoding_y_true') # y_pred = self.one_hot_encoding(y_pred, name='GDICE_one_hot_encoding_y_pred') y_true = tf.reshape(y_true, self.flat_shape, name='GDICE_reshape_y_true') # Flatten along the volume dimensions y_pred = tf.reshape(y_pred, self.flat_shape, name='GDICE_reshape_y_pred') # Flatten along the volume dimensions size_y_true = tf.reduce_sum(y_true, axis=1, name='GDICE_size_y_true') size_y_pred = tf.reduce_sum(y_pred, axis=1, name='GDICE_size_y_pred') numerator = tf.reduce_sum(y_true * y_pred, axis=1) denominator = (size_y_true + size_y_pred) return tf.div_no_nan(2 * numerator + self.smooth, denominator + self.smooth) @function_decorator('GeneralizeDICE__loss') def loss(self, y_true, y_pred): return 1 - tf.reduce_mean(self.weigthed_dice(y_true, y_pred)) @function_decorator('GeneralizeDICE__metric') def metric(self, y_true, y_pred): return tf.reduce_mean(self.weigthed_dice(y_true, y_pred)) @function_decorator('GeneralizeDICE__loss_macro') def loss_macro(self, y_true, y_pred): return 1 - tf.reduce_mean(self.macro_dice(y_true, y_pred)) @function_decorator('GeneralizeDICE__metric_macro') def metric_macro(self, y_true, y_pred): return tf.reduce_mean(self.macro_dice(y_true, y_pred)) def target_registration_error(y_true, y_pred, average=True): ''' Target Registration Error measured as the average distance between y_true and y_pred :param y_true: [N, D] target points :param y_pred: [N, D] predicted points :param average: return the average TRE or an [N,] array :return: averate TRE or [N,] array of TRE for each point ''' assert y_true.shape == y_pred.shape, "y_true and y_pred must have the same shape" if average: return tf.reduce_mean(tf.linalg.norm(y_pred - y_true, axis=1)) else: return tf.linalg.norm(y_pred - y_true, axis=1) # TODO: tensorflow-graphic has an implementation of Hausdorff ditance. # However, this is not where it should and I can't find it # def HausdorffDistance_exact(y_true, y_pred, ohe=False, name='hd_exact'): # if ohe: # y_true = tf.transpose(y_true, [0, 4, 1, 2, 3]) # y_pred = tf.transpose(y_pred, [0, 4, 1, 2, 3]) # y_true_coords = tf.where(y_true) # y_pred_coords = tf.where(y_pred) # # return tfg_nn.loss.hausdorff_distance.evaluate(y_true_coords, y_pred_coords, name=name)