import os, sys # currentdir = os.path.dirname(os.path.realpath(__file__)) # parentdir = os.path.dirname(currentdir) # sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing # # PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True' import tensorflow as tf import voxelmorph as vxm from voxelmorph.tf.modelio import LoadableModel, store_config_args from tensorflow.keras.layers import UpSampling3D class WeaklySupervised(LoadableModel): @store_config_args def __init__(self, inshape, all_labels: [list, tuple], nb_unet_features=None, int_steps=5, bidir=False, int_downsize=1, outshape=None, **kwargs): """ Parameters: inshape: Input shape. e.g. (192, 192, 192) all_labels: List of all labels included in training segmentations. hot_labels: List of labels to output as one-hot maps. nb_unet_features: Unet convolutional features. See VxmDense documentation for more information. int_steps: Number of flow integration steps. The warp is non-diffeomorphic when this value is 0. int_downsize: Dowsampling of the displacement map. Integer kwargs: Forwarded to the internal VxmDense model. """ mov_segm = tf.keras.Input((*inshape, len(all_labels)), name='mov_segmentations_input') fix_img = tf.keras.Input((*inshape, 1), name='fix_image_input') mov_img = tf.keras.Input((*inshape, 1), name='mov_image_input') input_model = tf.keras.Model(inputs=[mov_img, fix_img], outputs=[mov_img, fix_img]) vxm_model = vxm.networks.VxmDense(inshape=inshape, nb_unet_features=nb_unet_features, input_model=input_model, int_steps=int_steps, bidir=bidir, int_downsize=int_downsize, **kwargs) pred_segm = vxm.layers.SpatialTransformer(interp_method='linear', indexing='ij', name='interp_segm')( [mov_segm, vxm_model.references.pos_flow]) inputs = [mov_img, fix_img, mov_segm] # mov_img, mov_segm, fix_segm model_outputs = vxm_model.outputs if outshape is not None: scale_factors = [o//i for i, o in zip(inshape, outshape)] upsampling_layer = UpSampling3D(scale_factors) # Doesn't perform trilinear, only nearest # Image model_outputs[0] = upsampling_layer(model_outputs[0]) # Segmentation pred_segm = upsampling_layer(pred_segm) # Displacement map model_outputs[1] = upsampling_layer(scale_factors)(model_outputs[1]) model_outputs[1] = tf.multiply(model_outputs[1], tf.cast(scale_factors, model_outputs[1].dtype)) # Just renaming pred_fix_image = tf.identity(model_outputs[0], name='pred_fix_image') pred_dm = tf.identity(model_outputs[1], name='pred_dm') pred_segm = tf.identity(pred_segm, name='pred_fix_segm') outputs = [pred_fix_image, pred_segm, pred_dm] self.references = LoadableModel.ReferenceContainer() self.references.pred_segm = pred_segm self.references.pred_img = vxm_model.outputs[0] self.references.pos_flow = vxm_model.references.pos_flow super(WeaklySupervised, self).__init__(inputs=inputs, outputs=outputs) def get_registration_model(self): return tf.keras.Model(self.inputs, self.references.pos_flow) def register(self, mov_img, mov_segm, fix_segm): return self.get_registration_model().predict([mov_segm, fix_segm, mov_img]) def apply_transform(self, mov_img, mov_segm, fix_segm, interp_method='linear'): warp_model = self.get_registration_model() img_input = tf.keras.Input(shape=mov_img.shape[1:], name='input_img') pred_img = vxm.layers.SpatialTransformer(interp_method=interp_method)([img_input, warp_model.output]) return tf.keras.Model(warp_model.inputs, pred_img).predict([mov_segm, fix_segm, mov_img])