import numpy as np import tensorflow as tf class ThinPlateSplines: def __init__(self, ctrl_pts: tf.Tensor, target_pts: tf.Tensor, reg=0.0): """ :param ctrl_pts: [N, d] tensor of control d-dimensional points :param target_pts: [N, d] tensor of target d-dimensional points :param reg: regularization coefficient """ self.__ctrl_pts = ctrl_pts self.__target_pts = target_pts self.__reg = reg self.__num_ctrl_pts = ctrl_pts.shape[0] self.__dim = ctrl_pts.shape[1] self.__compute_coeffs() # self.__aff_params = self.__coeffs[self.__num_ctrl_pts:, ...] # Affine parameters of the TPS self.__non_aff_paramms = self.__coeffs[:self.__num_ctrl_pts, ...] # Non-affine parameters of he TPS def __compute_coeffs(self): target_pts_aug = tf.concat([self.__target_pts, tf.zeros([self.__dim + 1, self.__dim], dtype=self.__target_pts.dtype)], axis=0) # T = self.__make_T() T_i = tf.cast(tf.linalg.inv(self.__make_T()), target_pts_aug.dtype) self.__coeffs = tf.cast(tf.matmul(T_i, target_pts_aug), tf.float32) def __make_T(self): # cp: [K x 2] control points # T: [(num_pts+dim+1) x (num_pts+dim+1)] num_pts = self.__ctrl_pts.shape[0] P = tf.concat([tf.ones([self.__num_ctrl_pts, 1], dtype=tf.float32), self.__ctrl_pts], axis=1) zeros = np.zeros([self.__dim + 1, self.__dim + 1], dtype=np.float) self.__K = self.__U_dist(self.__ctrl_pts) alfa = tf.reduce_mean(self.__K) self.__K = self.__K + tf.ones_like(self.__K) * tf.pow(alfa, 2) * self.__reg # top = tf.concat([self.__K, P], axis=1) # bottom = tf.concat([tf.transpose(P), zeros], axis=1) return tf.concat([tf.concat([self.__K, P], axis=1), tf.concat([tf.transpose(P), zeros], axis=1)], axis=0) def __U_dist(self, ctrl_pts, int_pts=None): if int_pts is None: dist = self.__pairwise_distance_equal(ctrl_pts) # Already squared! else: dist = self.__pairwise_distance_different(ctrl_pts, int_pts) # Already squared! # U(x, y) = p_w_dist(x, y)^2 * log(p_w_dist(x, y)) (dist() > =0); 0 otw if ctrl_pts.shape[-1] == 2: u_dist = dist * tf.math.log(dist + 1e-6) else: # Src: https://github.com/vaipatel/morphops/blob/master/morphops/tps.py # In particular, if k = 2, then U(r) = r^2 * log(r^2), else U(r) = r u_dist = tf.sqrt(dist) # tf.matrix_set_diag(u_dist, tf.constant(0, dtype=dist_sq.dtype)) # reg_term = self.__reg * tf.pow(alfa, 2) * tf.eye(self.__num_ctrl_pts) return u_dist # + reg_term def __pairwise_distance_sq(self, pts_a, pts_b): with tf.variable_scope('pairwise_distance'): if np.all(pts_a == pts_b): # This implementation works better when doing the pairwise distance os a single set of points pts_a_ = tf.reshape(pts_a, [-1, 1, 3]) pts_b_ = tf.reshape(pts_b, [1, -1, 3]) dist = tf.reduce_sum(tf.square(pts_a_ - pts_b_), 2) # squared pairwise distance else: # PwD^2= A_norm^2 - 2*A*B' + B_norm^2 pts_a_ = tf.reduce_sum(tf.square(pts_a), 1) pts_b_ = tf.reduce_sum(tf.square(pts_b), 1) pts_a_ = tf.expand_dims(pts_a_, 1) pts_b_ = tf.expand_dims(pts_b_, 0) pts_a_pts_b_ = tf.matmul(pts_a, pts_b, adjoint_b=True) dist = pts_a_ - 2 * pts_a_pts_b_ + pts_b_ return tf.cast(dist, tf.float32) @staticmethod def __pairwise_distance_equal(pts): # This implementation works better when doing the pairwise distance os a single set of points dist = tf.reduce_sum(tf.square(tf.reshape(pts, [-1, 1, 3]) - tf.reshape(pts, [1, -1, 3])), 2) # squared pairwise distance return tf.cast(dist, tf.float32) @staticmethod def __pairwise_distance_different(pts_a, pts_b): pts_a_ = tf.reduce_sum(tf.square(pts_a), 1) pts_b_ = tf.reduce_sum(tf.square(pts_b), 1) pts_a_ = tf.expand_dims(pts_a_, 1) pts_b_ = tf.expand_dims(pts_b_, 0) pts_a_pts_b_ = tf.matmul(pts_a, pts_b, adjoint_b=True) dist = pts_a_ - 2 * pts_a_pts_b_ + pts_b_ return tf.cast(dist, tf.float32) def __lift_pts(self, int_pts: tf.Tensor, num_pts): # int_pts: [N x 2], input points # cp: [K x 2], control points # pLift: [N x (3+K)], lifted input points # u_dist = self.__U_dist(int_pts, self.__ctrl_pts) int_pts_lift = tf.concat([self.__U_dist(int_pts, self.__ctrl_pts), tf.ones([num_pts, 1], dtype=tf.float32), int_pts], axis=1) return int_pts_lift @property def bending_energy(self): aux = tf.matmul(self.__non_aff_paramms, self.__K, transpose_a=True) return tf.matmul(aux, self.__non_aff_paramms) def interpolate(self, int_points): #, num_pts): """ :param int_points: [K, d] flattened d-points of a mesh :return: """ num_pts = tf.shape(int_points)[0] int_points_lift = self.__lift_pts(int_points, num_pts) return tf.matmul(int_points_lift, self.__coeffs) def __call__(self, int_points, num_pts, **kwargs): return self.interpolate(int_points) # , num_pts) def thin_plate_splines_batch(ctrl_pts: tf.Tensor, target_pts: tf.Tensor, int_pts: tf.Tensor, reg=0.0): _batches = ctrl_pts.shape[0] if tf.get_default_session() is not None: print('DEBUG TIME') def tps_sample(in_data): cp, tp, ip = in_data # _num_pts = ip.shape[0] tps = ThinPlateSplines(cp, tp, reg) interp = tps.interpolate(ip) # , _num_pts) return interp return tf.map_fn(tps_sample, elems=(ctrl_pts, target_pts, int_pts), dtype=tf.float32)