Spaces:
Sleeping
Sleeping
Vemund Fredriksen
commited on
Commit
·
c35dad1
1
Parent(s):
c7c329a
Initial working pipeline
Browse files- __init__.py +0 -0
- lungtumormask/__init__.py +0 -0
- lungtumormask/dataprocessing.py +19 -6
- lungtumormask/mask.py +34 -0
- lungtumormask/network.py +151 -0
- setup.py +11 -0
__init__.py
ADDED
File without changes
|
lungtumormask/__init__.py
ADDED
File without changes
|
lungtumormask/dataprocessing.py
CHANGED
@@ -3,6 +3,7 @@ from lungmask import mask
|
|
3 |
from monai import transforms
|
4 |
from monai.transforms.intensity.array import ThresholdIntensity
|
5 |
from monai.transforms.spatial.array import Resize, Spacing
|
|
|
6 |
import torch
|
7 |
from tqdm import tqdm
|
8 |
import numpy as np
|
@@ -113,8 +114,9 @@ def process_lung_scan(scan_dict, extremes):
|
|
113 |
transformer_1 = Compose(
|
114 |
[
|
115 |
DivisiblePadd(keys=["image"], k=16, mode='constant'),
|
116 |
-
|
117 |
-
|
|
|
118 |
]
|
119 |
)
|
120 |
|
@@ -151,8 +153,8 @@ def preprocess(image_path):
|
|
151 |
|
152 |
preprocess_dump['affine'] = left_lung_processed[1]
|
153 |
|
154 |
-
preprocess_dump['right_lung'] = right_lung_processed[0]
|
155 |
-
preprocess_dump['left_lung'] = left_lung_processed[0]
|
156 |
|
157 |
return preprocess_dump
|
158 |
|
@@ -223,8 +225,19 @@ def stitch(org_shape, cropped, roi):
|
|
223 |
return holder
|
224 |
|
225 |
def post_process(left_mask, right_mask, preprocess_dump):
|
226 |
-
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
left = voxel_space(left, preprocess_dump['left_extremes'])
|
230 |
right = voxel_space(right, preprocess_dump['right_extremes'])
|
|
|
3 |
from monai import transforms
|
4 |
from monai.transforms.intensity.array import ThresholdIntensity
|
5 |
from monai.transforms.spatial.array import Resize, Spacing
|
6 |
+
from monai.transforms.utility.dictionary import ToTensord
|
7 |
import torch
|
8 |
from tqdm import tqdm
|
9 |
import numpy as np
|
|
|
114 |
transformer_1 = Compose(
|
115 |
[
|
116 |
DivisiblePadd(keys=["image"], k=16, mode='constant'),
|
117 |
+
ToTensord(keys=['image'])
|
118 |
+
#SqueezeDimd(keys=["image"], dim = 0),
|
119 |
+
#ToNumpyd(keys=["image"]),
|
120 |
]
|
121 |
)
|
122 |
|
|
|
153 |
|
154 |
preprocess_dump['affine'] = left_lung_processed[1]
|
155 |
|
156 |
+
preprocess_dump['right_lung'] = right_lung_processed[0].unsqueeze(0)
|
157 |
+
preprocess_dump['left_lung'] = left_lung_processed[0].unsqueeze(0)
|
158 |
|
159 |
return preprocess_dump
|
160 |
|
|
|
225 |
return holder
|
226 |
|
227 |
def post_process(left_mask, right_mask, preprocess_dump):
|
228 |
+
|
229 |
+
left_mask[left_mask >= 0.5] = 1
|
230 |
+
left_mask[left_mask < 0.5] = 0
|
231 |
+
|
232 |
+
left_mask = left_mask.astype(int)
|
233 |
+
|
234 |
+
right_mask[right_mask >= 0.5] = 1
|
235 |
+
right_mask[right_mask < 0.5] = 0
|
236 |
+
|
237 |
+
right_mask = right_mask.astype(int)
|
238 |
+
|
239 |
+
left = remove_pad(left_mask, preprocess_dump['left_lung'].squeeze(0).squeeze(0).numpy())
|
240 |
+
right = remove_pad(right_mask, preprocess_dump['right_lung'].squeeze(0).squeeze(0).numpy())
|
241 |
|
242 |
left = voxel_space(left, preprocess_dump['left_extremes'])
|
243 |
right = voxel_space(right, preprocess_dump['right_extremes'])
|
lungtumormask/mask.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy import load
|
2 |
+
from lungtumormask.dataprocessing import preprocess, post_process
|
3 |
+
from lungtumormask.network import UNet_double
|
4 |
+
import torch as T
|
5 |
+
import nibabel
|
6 |
+
|
7 |
+
def load_model():
|
8 |
+
model = UNet_double(3, 1, 1, tuple([64, 128, 256, 512, 1024]), tuple([2 for i in range(4)]), num_res_units = 0)
|
9 |
+
state_dict = T.hub.load_state_dict_from_url("https://github.com/VemundFredriksen/LungTumorMask/releases/download/0.0/dc_student.pth", progress=True, map_location=T.device('cuda:0'))
|
10 |
+
#model.load_state_dict(T.load("D:\\OneDrive\\Skole\\Universitet\\10. Semester\\Masteroppgave\\bruk_for_full_model.pth", map_location="cuda:0"))
|
11 |
+
model.load_state_dict(state_dict)
|
12 |
+
model.eval()
|
13 |
+
return model
|
14 |
+
|
15 |
+
def mask(image_path, save_path):
|
16 |
+
print("Loading model...")
|
17 |
+
model = load_model()
|
18 |
+
|
19 |
+
print("Preprocessing image...")
|
20 |
+
preprocess_dump = preprocess(image_path)
|
21 |
+
|
22 |
+
print("Looking for tumors...")
|
23 |
+
left = model(preprocess_dump['left_lung']).squeeze(0).squeeze(0).detach().numpy()
|
24 |
+
right = model(preprocess_dump['right_lung']).squeeze(0).squeeze(0).detach().numpy()
|
25 |
+
|
26 |
+
print("Post-processing image...")
|
27 |
+
infered = post_process(left, right, preprocess_dump)
|
28 |
+
|
29 |
+
print(f"Storing segmentation at {save_path}")
|
30 |
+
nimage = nibabel.Nifti1Image(infered, preprocess_dump['org_affine'])
|
31 |
+
nibabel.save(nimage, save_path)
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
mask("D:\\Datasets\\MSD\\Images\\lung_003.nii.gz", "D:\\Datasets\\MSD\\Images\\out3.nii.gz")
|
lungtumormask/network.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Sequence, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
from monai.networks.blocks.convolutions import Convolution, ResidualUnit
|
7 |
+
from monai.networks.layers.factories import Act, Norm
|
8 |
+
from monai.networks.layers.simplelayers import SkipConnection
|
9 |
+
from monai.utils import alias, export
|
10 |
+
|
11 |
+
class UNet_double(nn.Module):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
dimensions: int,
|
15 |
+
in_channels: int,
|
16 |
+
out_channels: int,
|
17 |
+
channels: Sequence[int],
|
18 |
+
strides: Sequence[int],
|
19 |
+
kernel_size: Union[Sequence[int], int] = 3,
|
20 |
+
up_kernel_size: Union[Sequence[int], int] = 3,
|
21 |
+
num_res_units: int = 0,
|
22 |
+
act=Act.PRELU,
|
23 |
+
norm=Norm.INSTANCE,
|
24 |
+
dropout=0.0,) -> None:
|
25 |
+
|
26 |
+
super().__init__()
|
27 |
+
|
28 |
+
self.dimensions = dimensions
|
29 |
+
self.in_channels = in_channels
|
30 |
+
self.out_channels = out_channels
|
31 |
+
self.channels = channels
|
32 |
+
self.strides = strides
|
33 |
+
self.kernel_size = kernel_size
|
34 |
+
self.up_kernel_size = up_kernel_size
|
35 |
+
self.num_res_units = num_res_units
|
36 |
+
self.act = act
|
37 |
+
self.norm = norm
|
38 |
+
self.dropout = dropout
|
39 |
+
|
40 |
+
def _create_block(
|
41 |
+
inc: int, outc: int, channels: Sequence[int], strides: Sequence[int], is_top: bool) -> nn.Sequential:
|
42 |
+
|
43 |
+
c = channels[0]
|
44 |
+
s = strides[0]
|
45 |
+
|
46 |
+
subblock: nn.Module
|
47 |
+
|
48 |
+
if len(channels) > 2:
|
49 |
+
subblock1, subblock2 = _create_block(c, c, channels[1:], strides[1:], False) # continue recursion down
|
50 |
+
upc = c * 2
|
51 |
+
else:
|
52 |
+
# the next layer is the bottom so stop recursion, create the bottom layer as the sublock for this layer
|
53 |
+
subblock = self._get_bottom_layer(c, channels[1])
|
54 |
+
upc = c + channels[1]
|
55 |
+
|
56 |
+
down = self._get_down_layer(inc, c, s, is_top) # create layer in downsampling path
|
57 |
+
up1 = self._get_up_layer(upc, outc, s, is_top) # create layer in upsampling path
|
58 |
+
up2 = self._get_up_layer(upc, outc, s, is_top)
|
59 |
+
|
60 |
+
return nn.Sequential(down, SkipConnection(subblock), up1), nn.Sequential(down, SkipConnection(subblock), up2)
|
61 |
+
|
62 |
+
down = self._get_down_layer(inc, c, s, is_top) # create layer in downsampling path
|
63 |
+
up1 = self._get_up_layer(upc, outc, s, is_top) # create layer in upsampling path
|
64 |
+
up2 = self._get_up_layer(upc, outc, s, is_top)
|
65 |
+
|
66 |
+
return nn.Sequential(down, SkipConnection(subblock1), up1), nn.Sequential(down, SkipConnection(subblock2), up2)
|
67 |
+
|
68 |
+
self.model1, self.model2 = _create_block(in_channels, out_channels, self.channels, self.strides, True)
|
69 |
+
self.activation = nn.Sigmoid()
|
70 |
+
|
71 |
+
def _get_down_layer(self, in_channels: int, out_channels: int, strides: int, is_top: bool) -> nn.Module:
|
72 |
+
"""
|
73 |
+
Args:
|
74 |
+
in_channels: number of input channels.
|
75 |
+
out_channels: number of output channels.
|
76 |
+
strides: convolution stride.
|
77 |
+
is_top: True if this is the top block.
|
78 |
+
"""
|
79 |
+
if self.num_res_units > 0:
|
80 |
+
return ResidualUnit(
|
81 |
+
self.dimensions,
|
82 |
+
in_channels,
|
83 |
+
out_channels,
|
84 |
+
strides=strides,
|
85 |
+
kernel_size=self.kernel_size,
|
86 |
+
subunits=self.num_res_units,
|
87 |
+
act=self.act,
|
88 |
+
norm=self.norm,
|
89 |
+
dropout=self.dropout,
|
90 |
+
)
|
91 |
+
return Convolution(
|
92 |
+
self.dimensions,
|
93 |
+
in_channels,
|
94 |
+
out_channels,
|
95 |
+
strides=strides,
|
96 |
+
kernel_size=self.kernel_size,
|
97 |
+
act=self.act,
|
98 |
+
norm=self.norm,
|
99 |
+
dropout=self.dropout,
|
100 |
+
)
|
101 |
+
|
102 |
+
def _get_bottom_layer(self, in_channels: int, out_channels: int) -> nn.Module:
|
103 |
+
"""
|
104 |
+
Args:
|
105 |
+
in_channels: number of input channels.
|
106 |
+
out_channels: number of output channels.
|
107 |
+
"""
|
108 |
+
return self._get_down_layer(in_channels, out_channels, 1, False)
|
109 |
+
|
110 |
+
def _get_up_layer(self, in_channels: int, out_channels: int, strides: int, is_top: bool) -> nn.Module:
|
111 |
+
"""
|
112 |
+
Args:
|
113 |
+
in_channels: number of input channels.
|
114 |
+
out_channels: number of output channels.
|
115 |
+
strides: convolution stride.
|
116 |
+
is_top: True if this is the top block.
|
117 |
+
"""
|
118 |
+
conv: Union[Convolution, nn.Sequential]
|
119 |
+
|
120 |
+
conv = Convolution(
|
121 |
+
self.dimensions,
|
122 |
+
in_channels,
|
123 |
+
out_channels,
|
124 |
+
strides=strides,
|
125 |
+
kernel_size=self.up_kernel_size,
|
126 |
+
act=self.act,
|
127 |
+
norm=self.norm,
|
128 |
+
dropout=self.dropout,
|
129 |
+
conv_only=is_top and self.num_res_units == 0,
|
130 |
+
is_transposed=True,
|
131 |
+
)
|
132 |
+
|
133 |
+
if self.num_res_units > 0:
|
134 |
+
ru = ResidualUnit(
|
135 |
+
self.dimensions,
|
136 |
+
out_channels,
|
137 |
+
out_channels,
|
138 |
+
strides=1,
|
139 |
+
kernel_size=self.kernel_size,
|
140 |
+
subunits=1,
|
141 |
+
act=self.act,
|
142 |
+
norm=self.norm,
|
143 |
+
dropout=self.dropout,
|
144 |
+
last_conv_only=is_top,
|
145 |
+
)
|
146 |
+
conv = nn.Sequential(conv, ru)
|
147 |
+
|
148 |
+
return conv
|
149 |
+
|
150 |
+
def forward(self, x, box = None) -> torch.Tensor:
|
151 |
+
return self.activation(self.model1(x))
|
setup.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import setup, find_packages
|
2 |
+
|
3 |
+
setup(
|
4 |
+
name="LungTumorMask",
|
5 |
+
packages=find_packages(),
|
6 |
+
version='1.0.1',
|
7 |
+
author="Svein Ole M Sevle, Vemund Fredriksen",
|
8 |
+
url="https://github.com/VemundFredriksen/LungTumorMask",
|
9 |
+
license="MIT",
|
10 |
+
python_requires='>=3.6'
|
11 |
+
)
|