Merge pull request #14 from andreped/dev
Browse filesAdded argparse support + linting CI + refactored
- .github/workflows/linting.yml +28 -0
- README.md +25 -1
- app.py +29 -4
- neukit/gui.py +76 -38
- neukit/inference.py +51 -28
- neukit/utils.py +9 -5
- setup.cfg +14 -0
- shell/format.sh +4 -0
- shell/lint.sh +23 -0
.github/workflows/linting.yml
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Linting
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- '*'
|
7 |
+
pull_request:
|
8 |
+
branches:
|
9 |
+
- '*'
|
10 |
+
workflow_dispatch:
|
11 |
+
|
12 |
+
jobs:
|
13 |
+
build:
|
14 |
+
runs-on: ubuntu-20.04
|
15 |
+
steps:
|
16 |
+
- uses: actions/checkout@v1
|
17 |
+
- name: Set up Python 3.7
|
18 |
+
uses: actions/setup-python@v2
|
19 |
+
with:
|
20 |
+
python-version: 3.7
|
21 |
+
|
22 |
+
- name: Install lint dependencies
|
23 |
+
run: |
|
24 |
+
pip install wheel setuptools
|
25 |
+
pip install black==22.3.0 isort==5.10.1 flake8==4.0.1
|
26 |
+
|
27 |
+
- name: Lint the code
|
28 |
+
run: sh shell/lint.sh
|
README.md
CHANGED
@@ -10,7 +10,7 @@ license: mit
|
|
10 |
app_file: app.py
|
11 |
---
|
12 |
|
13 |
-
<div align="center">
|
14 |
<h1 align="center">neukit</h1>
|
15 |
<h3 align="center">Automatic brain extraction and preoperative tumor segmentation from MRI</h3>
|
16 |
|
@@ -36,6 +36,8 @@ To access the live demo, click on the `Hugging Face` badge above. Below is a sna
|
|
36 |
|
37 |
## Development
|
38 |
|
|
|
|
|
39 |
Alternatively, you can deploy the software locally. Note that this is only relevant for development purposes. Simply dockerize the app and run it:
|
40 |
|
41 |
```
|
@@ -45,6 +47,28 @@ docker run -it -p 7860:7860 neukit
|
|
45 |
|
46 |
Then open `http://127.0.0.1:7860` in your favourite internet browser to view the demo.
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
## Citation
|
49 |
|
50 |
If you found the tool useful in your research, please, cite the corresponding software paper:
|
|
|
10 |
app_file: app.py
|
11 |
---
|
12 |
|
13 |
+
<div align="center">M
|
14 |
<h1 align="center">neukit</h1>
|
15 |
<h3 align="center">Automatic brain extraction and preoperative tumor segmentation from MRI</h3>
|
16 |
|
|
|
36 |
|
37 |
## Development
|
38 |
|
39 |
+
### Docker
|
40 |
+
|
41 |
Alternatively, you can deploy the software locally. Note that this is only relevant for development purposes. Simply dockerize the app and run it:
|
42 |
|
43 |
```
|
|
|
47 |
|
48 |
Then open `http://127.0.0.1:7860` in your favourite internet browser to view the demo.
|
49 |
|
50 |
+
### Python
|
51 |
+
|
52 |
+
It is also possible to run the app locally without Docker. Just setup a virtual environment and run the app.
|
53 |
+
Note that the current working directory would need to be adjusted based on where `neukit` is located on disk.
|
54 |
+
|
55 |
+
```
|
56 |
+
git clone https://github.com/andreped/neukit.git
|
57 |
+
cd neukit/
|
58 |
+
|
59 |
+
virtualenv -ppython3 venv --clear
|
60 |
+
source venv/bin/activate
|
61 |
+
pip install -r requirements.txt
|
62 |
+
|
63 |
+
python app.py --cwd ./
|
64 |
+
```
|
65 |
+
|
66 |
+
## Troubleshooting
|
67 |
+
|
68 |
+
Note that due to `share=True` being enabled by default when launching the app,
|
69 |
+
internet access is required for the app to be launched. This can disabled by setting
|
70 |
+
the argument to `--share 0`.
|
71 |
+
|
72 |
## Citation
|
73 |
|
74 |
If you found the tool useful in your research, please, cite the corresponding software paper:
|
app.py
CHANGED
@@ -1,14 +1,39 @@
|
|
|
|
|
|
|
|
1 |
from neukit.gui import WebUI
|
2 |
|
3 |
|
4 |
def main():
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# initialize and run app
|
11 |
-
|
|
|
12 |
app.run()
|
13 |
|
14 |
|
|
|
1 |
+
import os
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
from neukit.gui import WebUI
|
5 |
|
6 |
|
7 |
def main():
|
8 |
+
parser = ArgumentParser()
|
9 |
+
parser.add_argument(
|
10 |
+
"--cwd",
|
11 |
+
type=str,
|
12 |
+
default="/home/user/app/",
|
13 |
+
help="Set current working directory (path to app.py).",
|
14 |
+
)
|
15 |
+
parser.add_argument(
|
16 |
+
"--share",
|
17 |
+
type=int,
|
18 |
+
default=1,
|
19 |
+
help="Whether to enable the app to be accessible online"
|
20 |
+
"-> setups a public link which requires internet access.",
|
21 |
+
)
|
22 |
+
args = parser.parse_args()
|
23 |
|
24 |
+
print("Current working directory:", args.cwd)
|
25 |
+
|
26 |
+
if not os.path.exists(args.cwd):
|
27 |
+
raise ValueError("Chosen 'cwd' is not a valid path!")
|
28 |
+
if args.share not in [0, 1]:
|
29 |
+
raise ValueError(
|
30 |
+
"The 'share' argument can only be set to 0 or 1, but was:",
|
31 |
+
args.share,
|
32 |
+
)
|
33 |
|
34 |
# initialize and run app
|
35 |
+
print("Launching demo...")
|
36 |
+
app = WebUI(cwd=args.cwd, share=args.share)
|
37 |
app.run()
|
38 |
|
39 |
|
neukit/gui.py
CHANGED
@@ -1,10 +1,20 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
from .inference import run_model
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
class WebUI:
|
7 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
8 |
# global states
|
9 |
self.images = []
|
10 |
self.pred_images = []
|
@@ -14,8 +24,9 @@ class WebUI:
|
|
14 |
|
15 |
self.model_name = model_name
|
16 |
self.cwd = cwd
|
|
|
17 |
|
18 |
-
self.class_name = "meningioma" # default
|
19 |
self.class_names = {
|
20 |
"meningioma": "MRI_Meningioma",
|
21 |
"low-grade": "MRI_LGGlioma",
|
@@ -33,41 +44,55 @@ class WebUI:
|
|
33 |
}
|
34 |
|
35 |
# define widgets not to be rendered immediantly, but later on
|
36 |
-
self.slider = gr.Slider(
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
self.volume_renderer = gr.Model3D(
|
38 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
39 |
label="3D Model",
|
40 |
visible=True,
|
41 |
elem_id="model-3d",
|
42 |
).style(height=512)
|
43 |
-
|
44 |
def set_class_name(self, value):
|
45 |
print("Changed task to:", value)
|
46 |
self.class_name = value
|
47 |
|
48 |
def combine_ct_and_seg(self, img, pred):
|
49 |
return (img, [(pred, self.class_name)])
|
50 |
-
|
51 |
def upload_file(self, file):
|
52 |
return file.name
|
53 |
-
|
54 |
-
def
|
55 |
path = mesh_file_name.name
|
56 |
-
run_model(
|
|
|
|
|
|
|
|
|
|
|
57 |
nifti_to_glb("prediction.nii.gz")
|
58 |
|
59 |
self.images = load_ct_to_numpy(path)
|
60 |
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
|
61 |
return "./prediction.obj"
|
62 |
-
|
63 |
def get_img_pred_pair(self, k):
|
64 |
k = int(k) - 1
|
65 |
out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items
|
66 |
-
out[k] = gr.AnnotatedImage.update(
|
|
|
|
|
|
|
67 |
return out
|
68 |
|
69 |
def run(self):
|
70 |
-
css="""
|
71 |
#model-3d {
|
72 |
height: 512px;
|
73 |
}
|
@@ -80,18 +105,15 @@ class WebUI:
|
|
80 |
}
|
81 |
"""
|
82 |
with gr.Blocks(css=css) as demo:
|
83 |
-
|
84 |
with gr.Row():
|
85 |
-
|
86 |
-
file_output = gr.File(file_count="single", elem_id="upload") # elem_id="upload"
|
87 |
file_output.upload(self.upload_file, file_output, file_output)
|
88 |
|
89 |
-
# with gr.Column():
|
90 |
-
|
91 |
model_selector = gr.Dropdown(
|
92 |
list(self.class_names.keys()),
|
93 |
label="Task",
|
94 |
-
info="Which task to perform - one model for
|
|
|
95 |
multiselect=False,
|
96 |
size="sm",
|
97 |
)
|
@@ -101,39 +123,55 @@ class WebUI:
|
|
101 |
outputs=None,
|
102 |
)
|
103 |
|
104 |
-
run_btn = gr.Button("Run analysis").style(
|
|
|
|
|
105 |
run_btn.click(
|
106 |
-
fn=lambda x: self.
|
107 |
inputs=file_output,
|
108 |
outputs=self.volume_renderer,
|
109 |
)
|
110 |
-
|
111 |
with gr.Row():
|
112 |
gr.Examples(
|
113 |
-
examples=[
|
|
|
|
|
|
|
114 |
inputs=file_output,
|
115 |
outputs=file_output,
|
116 |
fn=self.upload_file,
|
117 |
cache_examples=True,
|
118 |
)
|
119 |
-
|
120 |
with gr.Row():
|
121 |
with gr.Box():
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
with gr.Box():
|
132 |
self.volume_renderer.render()
|
133 |
-
|
134 |
-
with gr.Row():
|
135 |
-
self.slider.render()
|
136 |
|
137 |
-
# sharing app publicly -> share=True:
|
138 |
-
#
|
139 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
|
5 |
from .inference import run_model
|
6 |
+
from .utils import load_ct_to_numpy
|
7 |
+
from .utils import load_pred_volume_to_numpy
|
8 |
+
from .utils import nifti_to_glb
|
9 |
|
10 |
|
11 |
class WebUI:
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
model_name: str = None,
|
15 |
+
cwd: str = "/home/user/app/",
|
16 |
+
share: int = 1,
|
17 |
+
):
|
18 |
# global states
|
19 |
self.images = []
|
20 |
self.pred_images = []
|
|
|
24 |
|
25 |
self.model_name = model_name
|
26 |
self.cwd = cwd
|
27 |
+
self.share = share
|
28 |
|
29 |
+
self.class_name = "meningioma" # default
|
30 |
self.class_names = {
|
31 |
"meningioma": "MRI_Meningioma",
|
32 |
"low-grade": "MRI_LGGlioma",
|
|
|
44 |
}
|
45 |
|
46 |
# define widgets not to be rendered immediantly, but later on
|
47 |
+
self.slider = gr.Slider(
|
48 |
+
1,
|
49 |
+
self.nb_slider_items,
|
50 |
+
value=1,
|
51 |
+
step=1,
|
52 |
+
label="Which 2D slice to show",
|
53 |
+
)
|
54 |
self.volume_renderer = gr.Model3D(
|
55 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
56 |
label="3D Model",
|
57 |
visible=True,
|
58 |
elem_id="model-3d",
|
59 |
).style(height=512)
|
60 |
+
|
61 |
def set_class_name(self, value):
|
62 |
print("Changed task to:", value)
|
63 |
self.class_name = value
|
64 |
|
65 |
def combine_ct_and_seg(self, img, pred):
|
66 |
return (img, [(pred, self.class_name)])
|
67 |
+
|
68 |
def upload_file(self, file):
|
69 |
return file.name
|
70 |
+
|
71 |
+
def process(self, mesh_file_name):
|
72 |
path = mesh_file_name.name
|
73 |
+
run_model(
|
74 |
+
path,
|
75 |
+
model_path=os.path.join(self.cwd, "resources/models/"),
|
76 |
+
task=self.class_names[self.class_name],
|
77 |
+
name=self.result_names[self.class_name],
|
78 |
+
)
|
79 |
nifti_to_glb("prediction.nii.gz")
|
80 |
|
81 |
self.images = load_ct_to_numpy(path)
|
82 |
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
|
83 |
return "./prediction.obj"
|
84 |
+
|
85 |
def get_img_pred_pair(self, k):
|
86 |
k = int(k) - 1
|
87 |
out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items
|
88 |
+
out[k] = gr.AnnotatedImage.update(
|
89 |
+
self.combine_ct_and_seg(self.images[k], self.pred_images[k]),
|
90 |
+
visible=True,
|
91 |
+
)
|
92 |
return out
|
93 |
|
94 |
def run(self):
|
95 |
+
css = """
|
96 |
#model-3d {
|
97 |
height: 512px;
|
98 |
}
|
|
|
105 |
}
|
106 |
"""
|
107 |
with gr.Blocks(css=css) as demo:
|
|
|
108 |
with gr.Row():
|
109 |
+
file_output = gr.File(file_count="single", elem_id="upload")
|
|
|
110 |
file_output.upload(self.upload_file, file_output, file_output)
|
111 |
|
|
|
|
|
112 |
model_selector = gr.Dropdown(
|
113 |
list(self.class_names.keys()),
|
114 |
label="Task",
|
115 |
+
info="Which task to perform - one model for"
|
116 |
+
"each brain tumor type and brain extraction",
|
117 |
multiselect=False,
|
118 |
size="sm",
|
119 |
)
|
|
|
123 |
outputs=None,
|
124 |
)
|
125 |
|
126 |
+
run_btn = gr.Button("Run analysis").style(
|
127 |
+
full_width=False, size="lg"
|
128 |
+
)
|
129 |
run_btn.click(
|
130 |
+
fn=lambda x: self.process(x),
|
131 |
inputs=file_output,
|
132 |
outputs=self.volume_renderer,
|
133 |
)
|
134 |
+
|
135 |
with gr.Row():
|
136 |
gr.Examples(
|
137 |
+
examples=[
|
138 |
+
os.path.join(self.cwd, "RegLib_C01_1.nii"),
|
139 |
+
os.path.join(self.cwd, "RegLib_C01_2.nii"),
|
140 |
+
],
|
141 |
inputs=file_output,
|
142 |
outputs=file_output,
|
143 |
fn=self.upload_file,
|
144 |
cache_examples=True,
|
145 |
)
|
146 |
+
|
147 |
with gr.Row():
|
148 |
with gr.Box():
|
149 |
+
with gr.Column():
|
150 |
+
image_boxes = []
|
151 |
+
for i in range(self.nb_slider_items):
|
152 |
+
visibility = True if i == 1 else False
|
153 |
+
t = gr.AnnotatedImage(
|
154 |
+
visible=visibility, elem_id="model-2d"
|
155 |
+
).style(
|
156 |
+
color_map={self.class_name: "#ffae00"},
|
157 |
+
height=512,
|
158 |
+
width=512,
|
159 |
+
)
|
160 |
+
image_boxes.append(t)
|
161 |
+
|
162 |
+
self.slider.input(
|
163 |
+
self.get_img_pred_pair, self.slider, image_boxes
|
164 |
+
)
|
165 |
+
|
166 |
+
self.slider.render()
|
167 |
+
|
168 |
with gr.Box():
|
169 |
self.volume_renderer.render()
|
|
|
|
|
|
|
170 |
|
171 |
+
# sharing app publicly -> share=True:
|
172 |
+
# https://gradio.app/sharing-your-app/
|
173 |
+
# inference times > 60 seconds -> need queue():
|
174 |
+
# https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
|
175 |
+
demo.queue().launch(
|
176 |
+
server_name="0.0.0.0", server_port=7860, share=self.share
|
177 |
+
)
|
neukit/inference.py
CHANGED
@@ -1,23 +1,28 @@
|
|
1 |
-
import os
|
2 |
-
import shutil
|
3 |
import configparser
|
4 |
import logging
|
5 |
-
import
|
|
|
6 |
|
7 |
|
8 |
-
def run_model(
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
logging.basicConfig()
|
10 |
logging.getLogger().setLevel(logging.WARNING)
|
11 |
|
12 |
-
if verbose ==
|
13 |
logging.getLogger().setLevel(logging.DEBUG)
|
14 |
-
elif verbose ==
|
15 |
logging.getLogger().setLevel(logging.INFO)
|
16 |
-
elif verbose ==
|
17 |
logging.getLogger().setLevel(logging.ERROR)
|
18 |
else:
|
19 |
raise ValueError("Unsupported verbose value provided:", verbose)
|
20 |
-
|
21 |
# delete patient/result folder if they exist
|
22 |
if os.path.exists("./patient/"):
|
23 |
shutil.rmtree("./patient/")
|
@@ -25,33 +30,42 @@ def run_model(input_path: str, model_path: str, verbose: str = "info", task: str
|
|
25 |
shutil.rmtree("./result/")
|
26 |
|
27 |
try:
|
28 |
-
#
|
29 |
filename = input_path.split("/")[-1]
|
30 |
splits = filename.split(".")
|
31 |
extension = ".".join(splits[1:])
|
32 |
patient_directory = "./patient/"
|
33 |
os.makedirs(patient_directory + "T0/", exist_ok=True)
|
34 |
-
shutil.copy(
|
35 |
-
|
|
|
|
|
|
|
36 |
# define output directory to save results
|
37 |
output_path = "./result/prediction-" + splits[0] + "/"
|
38 |
os.makedirs(output_path, exist_ok=True)
|
39 |
|
40 |
# Setting up the configuration file
|
41 |
rads_config = configparser.ConfigParser()
|
42 |
-
rads_config.add_section(
|
43 |
-
rads_config.set(
|
44 |
-
rads_config.set(
|
45 |
-
rads_config.add_section(
|
46 |
-
rads_config.set(
|
47 |
-
rads_config.set(
|
48 |
-
rads_config.set(
|
49 |
-
rads_config.set(
|
50 |
-
rads_config.set(
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
with open("rads_config.ini", "w") as f:
|
57 |
rads_config.write(f)
|
@@ -59,11 +73,20 @@ def run_model(input_path: str, model_path: str, verbose: str = "info", task: str
|
|
59 |
# finally, run inference
|
60 |
from raidionicsrads.compute import run_rads
|
61 |
|
62 |
-
run_rads(config_filename=
|
63 |
-
|
64 |
# rename and move final result
|
65 |
-
os.rename(
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
except Exception as e:
|
68 |
print(e)
|
69 |
|
|
|
|
|
|
|
1 |
import configparser
|
2 |
import logging
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
|
6 |
|
7 |
+
def run_model(
|
8 |
+
input_path: str,
|
9 |
+
model_path: str,
|
10 |
+
verbose: str = "info",
|
11 |
+
task: str = "MRI_Meningioma",
|
12 |
+
name: str = "Tumor",
|
13 |
+
):
|
14 |
logging.basicConfig()
|
15 |
logging.getLogger().setLevel(logging.WARNING)
|
16 |
|
17 |
+
if verbose == "debug":
|
18 |
logging.getLogger().setLevel(logging.DEBUG)
|
19 |
+
elif verbose == "info":
|
20 |
logging.getLogger().setLevel(logging.INFO)
|
21 |
+
elif verbose == "error":
|
22 |
logging.getLogger().setLevel(logging.ERROR)
|
23 |
else:
|
24 |
raise ValueError("Unsupported verbose value provided:", verbose)
|
25 |
+
|
26 |
# delete patient/result folder if they exist
|
27 |
if os.path.exists("./patient/"):
|
28 |
shutil.rmtree("./patient/")
|
|
|
30 |
shutil.rmtree("./result/")
|
31 |
|
32 |
try:
|
33 |
+
# setup temporary patient directory
|
34 |
filename = input_path.split("/")[-1]
|
35 |
splits = filename.split(".")
|
36 |
extension = ".".join(splits[1:])
|
37 |
patient_directory = "./patient/"
|
38 |
os.makedirs(patient_directory + "T0/", exist_ok=True)
|
39 |
+
shutil.copy(
|
40 |
+
input_path,
|
41 |
+
patient_directory + "T0/" + splits[0] + "-t1gd." + extension,
|
42 |
+
)
|
43 |
+
|
44 |
# define output directory to save results
|
45 |
output_path = "./result/prediction-" + splits[0] + "/"
|
46 |
os.makedirs(output_path, exist_ok=True)
|
47 |
|
48 |
# Setting up the configuration file
|
49 |
rads_config = configparser.ConfigParser()
|
50 |
+
rads_config.add_section("Default")
|
51 |
+
rads_config.set("Default", "task", "neuro_diagnosis")
|
52 |
+
rads_config.set("Default", "caller", "")
|
53 |
+
rads_config.add_section("System")
|
54 |
+
rads_config.set("System", "gpu_id", "-1")
|
55 |
+
rads_config.set("System", "input_folder", patient_directory)
|
56 |
+
rads_config.set("System", "output_folder", output_path)
|
57 |
+
rads_config.set("System", "model_folder", model_path)
|
58 |
+
rads_config.set(
|
59 |
+
"System",
|
60 |
+
"pipeline_filename",
|
61 |
+
os.path.join(model_path, task, "pipeline.json"),
|
62 |
+
)
|
63 |
+
rads_config.add_section("Runtime")
|
64 |
+
rads_config.set(
|
65 |
+
"Runtime", "reconstruction_method", "thresholding"
|
66 |
+
) # thresholding, probabilities
|
67 |
+
rads_config.set("Runtime", "reconstruction_order", "resample_first")
|
68 |
+
rads_config.set("Runtime", "use_preprocessed_data", "False")
|
69 |
|
70 |
with open("rads_config.ini", "w") as f:
|
71 |
rads_config.write(f)
|
|
|
73 |
# finally, run inference
|
74 |
from raidionicsrads.compute import run_rads
|
75 |
|
76 |
+
run_rads(config_filename="rads_config.ini")
|
77 |
+
|
78 |
# rename and move final result
|
79 |
+
os.rename(
|
80 |
+
"./result/prediction-"
|
81 |
+
+ splits[0]
|
82 |
+
+ "/T0/"
|
83 |
+
+ splits[0]
|
84 |
+
+ "-t1gd_annotation-"
|
85 |
+
+ name
|
86 |
+
+ ".nii.gz",
|
87 |
+
"./prediction.nii.gz",
|
88 |
+
)
|
89 |
+
|
90 |
except Exception as e:
|
91 |
print(e)
|
92 |
|
neukit/utils.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
import numpy as np
|
2 |
import nibabel as nib
|
|
|
3 |
from nibabel.processing import resample_to_output
|
4 |
from skimage.measure import marching_cubes
|
5 |
|
@@ -52,12 +52,16 @@ def nifti_to_glb(path, output="prediction.obj"):
|
|
52 |
verts, faces, normals, values = marching_cubes(data, 0)
|
53 |
faces += 1
|
54 |
|
55 |
-
with open(output,
|
56 |
for item in verts:
|
57 |
-
thefile.write("v {0} {1} {2}\n".format(item[0],item[1],item[2]))
|
58 |
|
59 |
for item in normals:
|
60 |
-
thefile.write("vn {0} {1} {2}\n".format(item[0],item[1],item[2]))
|
61 |
|
62 |
for item in faces:
|
63 |
-
thefile.write(
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import nibabel as nib
|
2 |
+
import numpy as np
|
3 |
from nibabel.processing import resample_to_output
|
4 |
from skimage.measure import marching_cubes
|
5 |
|
|
|
52 |
verts, faces, normals, values = marching_cubes(data, 0)
|
53 |
faces += 1
|
54 |
|
55 |
+
with open(output, "w") as thefile:
|
56 |
for item in verts:
|
57 |
+
thefile.write("v {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
58 |
|
59 |
for item in normals:
|
60 |
+
thefile.write("vn {0} {1} {2}\n".format(item[0], item[1], item[2]))
|
61 |
|
62 |
for item in faces:
|
63 |
+
thefile.write(
|
64 |
+
"f {0}//{0} {1}//{1} {2}//{2}\n".format(
|
65 |
+
item[0], item[1], item[2]
|
66 |
+
)
|
67 |
+
)
|
setup.cfg
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[metadata]
|
2 |
+
description-file = README.md
|
3 |
+
|
4 |
+
[isort]
|
5 |
+
force_single_line=True
|
6 |
+
known_first_party=neukit
|
7 |
+
line_length=80
|
8 |
+
profile=black
|
9 |
+
|
10 |
+
[flake8]
|
11 |
+
# imported but unused in __init__.py, that's ok.
|
12 |
+
per-file-ignores=*__init__.py:F401
|
13 |
+
ignore=E203,W503,W605,F632,E266,E731,E712,E741
|
14 |
+
max-line-length=80
|
shell/format.sh
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
isort --sl neukit app.py
|
3 |
+
black --line-length 80 neukit app.py
|
4 |
+
flake8 neukit app.py
|
shell/lint.sh
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
isort --check --sl -c neukit app.py
|
3 |
+
if ! [ $? -eq 0 ]
|
4 |
+
then
|
5 |
+
echo "Please run \"sh shell/format.sh\" to format the code."
|
6 |
+
exit 1
|
7 |
+
fi
|
8 |
+
echo "no issues with isort"
|
9 |
+
flake8 neukit app.py
|
10 |
+
if ! [ $? -eq 0 ]
|
11 |
+
then
|
12 |
+
echo "Please fix the code style issue."
|
13 |
+
exit 1
|
14 |
+
fi
|
15 |
+
echo "no issues with flake8"
|
16 |
+
black --check --line-length 80 neukit app.py
|
17 |
+
if ! [ $? -eq 0 ]
|
18 |
+
then
|
19 |
+
echo "Please run \"sh shell/format.sh\" to format the code."
|
20 |
+
exit 1
|
21 |
+
fi
|
22 |
+
echo "no issues with black"
|
23 |
+
echo "linting success!"
|