Spaces:
Runtime error
Runtime error
File size: 15,804 Bytes
d21f0b7 95401cf d21f0b7 d6b0d62 d21f0b7 d6b0d62 d21f0b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# MIT License
# Copyright (c) Microsoft
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# Copyright (c) [2025] [Microsoft]
# Copyright (c) [2025] [Chongjie Ye]
# SPDX-License-Identifier: MIT
# This file has been modified by Chongjie Ye on 2025/04/10
# Original file was released under MIT, with the full license text # available at https://github.com/atong01/conditional-flow-matching/blob/1.0.7/LICENSE.
# This modified file is released under the same license.
import gradio as gr
import os
os.environ['SPCONV_ALGO'] = 'native'
# Hi3DGen uses an attention backend that defaults to 'xformers', which requires an extra
# dependency not installed in this Space. Override the backend to use 'sdpa' instead.
os.environ['ATTN_BACKEND'] = 'sdpa'
from typing import *
import torch
import numpy as np
import tempfile
import zipfile
import types
# ---------------------------------------------------------------------------
# NOTE
# The original Hi3DGen implementation expects the `hi3dgen` Python package to
# reside alongside this app file. Hugging Face Spaces do not currently
# support uploading an entire folder via the web interface, so the `hi3dgen`
# source tree is bundled into a single `hi3dgen.zip` archive. On startup we
# extract this archive into the working directory if the `hi3dgen` package is
# not already present. This allows the rest of the code to `import hi3dgen` as
# normal.
# ---------------------------------------------------------------------------
def _ensure_hi3dgen_available():
"""Unpack hi3dgen.zip into the current directory if the hi3dgen package
is missing. This function is idempotent and safe to call multiple times.
"""
pkg_name = 'hi3dgen'
pkg_dir = os.path.join(os.path.dirname(__file__), pkg_name)
if os.path.isdir(pkg_dir):
return
archive_path = os.path.join(os.path.dirname(__file__), f"{pkg_name}.zip")
if os.path.isfile(archive_path):
try:
with zipfile.ZipFile(archive_path, 'r') as zf:
zf.extractall(os.path.dirname(__file__))
except Exception as e:
raise RuntimeError(f"Failed to extract {archive_path}: {e}")
else:
raise FileNotFoundError(
f"Required archive {archive_path} is missing. Make sure to upload the hi3dgen.zip file alongside app.py."
)
# Make sure the hi3dgen package is available before importing it
_ensure_hi3dgen_available()
# ---------------------------------------------------------------------------
# xformers stub
#
# Some modules in the Hi3DGen pipeline import `xformers.ops.memory_efficient_attention`
# to compute multi-head attention. The official `xformers` library is not
# installed in this Space (and requires GPU-only build), so we provide a
# minimal in-memory stub that exposes a compatible API backed by PyTorch's
# built-in scaled dot-product attention. This stub is lightweight and
# CPU-friendly. It registers both the `xformers` and `xformers.ops` modules
# in sys.modules so that subsequent imports succeed.
# ---------------------------------------------------------------------------
def _ensure_xformers_stub():
import sys
# If xformers is already available, do nothing.
if 'xformers.ops' in sys.modules:
return
import torch.nn.functional as F
# Create a new module object for xformers and its ops submodule
xformers_mod = types.ModuleType('xformers')
ops_mod = types.ModuleType('xformers.ops')
def memory_efficient_attention(query, key, value, attn_bias=None):
"""
Fallback implementation of memory_efficient_attention for CPU environments.
This wraps torch.nn.functional.scaled_dot_product_attention.
"""
# PyTorch expects the attention mask (bias) to be additive with shape
# broadcastable to (batch, num_heads, seq_len_query, seq_len_key). If
# attn_bias is provided and is non-zero, pass it through; otherwise
# supply None to avoid unnecessary allocations.
return F.scaled_dot_product_attention(query, key, value, attn_bias)
# Populate the ops module with our fallback function
ops_mod.memory_efficient_attention = memory_efficient_attention
# Expose ops as an attribute of xformers
xformers_mod.ops = ops_mod
# Register modules
sys.modules['xformers'] = xformers_mod
sys.modules['xformers.ops'] = ops_mod
# Ensure the xformers stub is registered before importing Hi3DGen
_ensure_xformers_stub()
from hi3dgen.pipelines import Hi3DGenPipeline
import trimesh
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
WEIGHTS_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'weights')
os.makedirs(TMP_DIR, exist_ok=True)
os.makedirs(WEIGHTS_DIR, exist_ok=True)
def cache_weights(weights_dir: str) -> dict:
import os
from huggingface_hub import snapshot_download
os.makedirs(weights_dir, exist_ok=True)
model_ids = [
"Stable-X/trellis-normal-v0-1",
"Stable-X/yoso-normal-v1-8-1",
"ZhengPeng7/BiRefNet",
]
cached_paths = {}
for model_id in model_ids:
print(f"Caching weights for: {model_id}")
# Check if the model is already cached
local_path = os.path.join(weights_dir, model_id.split("/")[-1])
if os.path.exists(local_path):
print(f"Already cached at: {local_path}")
cached_paths[model_id] = local_path
continue
# Download the model and cache it
print(f"Downloading and caching model: {model_id}")
# Use snapshot_download to download the model
local_path = snapshot_download(repo_id=model_id, local_dir=os.path.join(weights_dir, model_id.split("/")[-1]), force_download=False)
cached_paths[model_id] = local_path
print(f"Cached at: {local_path}")
return cached_paths
def preprocess_mesh(mesh_prompt):
print("Processing mesh")
trimesh_mesh = trimesh.load_mesh(mesh_prompt)
trimesh_mesh.export(mesh_prompt+'.glb')
return mesh_prompt+'.glb'
def preprocess_image(image):
if image is None:
return None
image = hi3dgen_pipeline.preprocess_image(image, resolution=1024)
return image
def generate_3d(image, seed=-1,
ss_guidance_strength=3, ss_sampling_steps=50,
slat_guidance_strength=3, slat_sampling_steps=6,):
if image is None:
return None, None, None
if seed == -1:
seed = np.random.randint(0, MAX_SEED)
image = hi3dgen_pipeline.preprocess_image(image, resolution=1024)
normal_image = normal_predictor(image, resolution=768, match_input_resolution=True, data_type='object')
outputs = hi3dgen_pipeline.run(
normal_image,
seed=seed,
formats=["mesh",],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
generated_mesh = outputs['mesh'][0]
# Save outputs
import datetime
output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True)
mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb"
# Export mesh
trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True)
trimesh_mesh.export(mesh_path)
return normal_image, mesh_path, mesh_path
def convert_mesh(mesh_path, export_format):
"""Download the mesh in the selected format."""
if not mesh_path:
return None
# Create a temporary file to store the mesh data
temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False)
temp_file_path = temp_file.name
new_mesh_path = mesh_path.replace(".glb", f".{export_format}")
mesh = trimesh.load_mesh(mesh_path)
mesh.export(temp_file_path) # Export to the temporary file
return temp_file_path # Return the path to the temporary file
# Create the Gradio interface with improved layout
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown(
"""
<h1 style='text-align: center;'>Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging</h1>
<p style='text-align: center;'>
<strong>V0.1, Introduced By
<a href="https://gaplab.cuhk.edu.cn/" target="_blank">GAP Lab</a> from CUHKSZ and
<a href="https://www.nvsgames.cn/" target="_blank">Game-AIGC Team</a> from ByteDance</strong>
</p>
"""
)
with gr.Row():
gr.Markdown("""
<p align="center">
<a title="Website" href="https://stable-x.github.io/Hi3DGen/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://stable-x.github.io/Hi3DGen/hi3dgen_paper.pdf" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/Stable-X/Hi3DGen" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Stable-X/Hi3DGen?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
""")
with gr.Row():
with gr.Column(scale=1):
with gr.Tabs():
with gr.Tab("Single Image"):
with gr.Row():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil")
normal_output = gr.Image(label="Normal Bridge", image_mode="RGBA", type="pil")
with gr.Tab("Multiple Images"):
gr.Markdown("<div style='text-align: center; padding: 40px; font-size: 24px;'>Multiple Images functionality is coming soon!</div>")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(-1, MAX_SEED, label="Seed", value=0, step=1)
gr.Markdown("#### Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=50, step=1)
gr.Markdown("#### Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=6, step=1)
with gr.Group():
with gr.Row():
gen_shape_btn = gr.Button("Generate Shape", size="lg", variant="primary")
# Right column - Output
with gr.Column(scale=1):
with gr.Column():
model_output = gr.Model3D(label="3D Model Preview (Each model is approximately 40MB, may take around 1 minute to load)")
with gr.Column():
export_format = gr.Dropdown(
choices=["obj", "glb", "ply", "stl"],
value="glb",
label="File Format"
)
download_btn = gr.DownloadButton(label="Export Mesh", interactive=False)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt]
)
gen_shape_btn.click(
generate_3d,
inputs=[
image_prompt, seed,
ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps
],
outputs=[normal_output, model_output, download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
def update_download_button(mesh_path, export_format):
if not mesh_path:
return gr.File.update(value=None, interactive=False)
download_path = convert_mesh(mesh_path, export_format)
return download_path
export_format.change(
update_download_button,
inputs=[model_output, export_format],
outputs=[download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
examples = None
gr.Markdown(
"""
**Acknowledgments**: Hi3DGen is built on the shoulders of giants. We would like to express our gratitude to the open-source research community and the developers of these pioneering projects:
- **3D Modeling:** Our 3D Model is finetuned from the SOTA open-source 3D foundation model [Trellis](https://github.com/microsoft/TRELLIS) and we draw inspiration from the teams behind [Rodin](https://hyperhuman.deemos.com/rodin), [Tripo](https://www.tripo3d.ai/app/home), and [Dora](https://github.com/Seed3D/Dora).
- **Normal Estimation:** Our Normal Estimation Model builds on the leading normal estimation research such as [StableNormal](https://github.com/hugoycj/StableNormal) and [GenPercept](https://github.com/aim-uofa/GenPercept).
**Your contributions and collaboration push the boundaries of 3D modeling!**
"""
)
if __name__ == "__main__":
# Download and cache the weights
cache_weights(WEIGHTS_DIR)
hi3dgen_pipeline = Hi3DGenPipeline.from_pretrained("weights/trellis-normal-v0-1")
hi3dgen_pipeline.cuda()
# Initialize normal predictor
try:
normal_predictor = torch.hub.load(os.path.join(torch.hub.get_dir(), 'hugoycj_StableNormal_main'), "StableNormal_turbo", yoso_version='yoso-normal-v1-8-1', source='local', local_cache_dir='./weights', pretrained=True)
except:
normal_predictor = torch.hub.load("hugoycj/StableNormal", "StableNormal_turbo", trust_repo=True, yoso_version='yoso-normal-v1-8-1', local_cache_dir='./weights')
# Launch the app
demo.launch(share=False, server_name="0.0.0.0")
|