Spaces:
Runtime error
Runtime error
File size: 15,038 Bytes
d21f0b7 e57cb55 d21f0b7 3a704bc 787d8e6 76ef786 787d8e6 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 d6b0d62 76ef786 d6b0d62 76ef786 d6b0d62 3a704bc d6b0d62 76ef786 d6b0d62 be08e83 3a704bc 76ef786 e57cb55 76ef786 3a704bc 76ef786 3a704bc 76ef786 e57cb55 76ef786 3a704bc e57cb55 3a704bc e57cb55 3a704bc 76ef786 e57cb55 76ef786 3a704bc 76ef786 3a704bc 76ef786 3a704bc 76ef786 3a704bc 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 76ef786 d21f0b7 3a704bc e57cb55 d21f0b7 76ef786 d21f0b7 3c768e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
# MIT License
# (see original notice and terms)
import os
import types
import zipfile
import importlib
from typing import *
import gradio as gr
import numpy as np
import torch
import tempfile
# ---- Force CPU-only environment globally ----
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # hide GPUs from torch
os.environ.setdefault("ATTN_BACKEND", "sdpa") # avoid xformers path
os.environ.setdefault("SPCONV_ALGO", "native") # safe sparseconv algo
# ---------------------------------------------
# ---------------------------------------------------------------------------
# Ensure bundled hi3dgen sources are available (extracted from hi3dgen.zip)
# ---------------------------------------------------------------------------
def _ensure_hi3dgen_available():
pkg_name = 'hi3dgen'
here = os.path.dirname(__file__)
pkg_dir = os.path.join(here, pkg_name)
if os.path.isdir(pkg_dir):
return
archive_path = os.path.join(here, f"{pkg_name}.zip")
if not os.path.isfile(archive_path):
raise FileNotFoundError(
f"Required archive {archive_path} is missing. Upload hi3dgen.zip next to app.py."
)
try:
with zipfile.ZipFile(archive_path, 'r') as zf:
zf.extractall(here)
except Exception as e:
raise RuntimeError(f"Failed to extract {archive_path}: {e}")
_ensure_hi3dgen_available()
# ---------------------------------------------------------------------------
# xformers stub (CPU-friendly fallback for xformers.ops.memory_efficient_attention)
# ---------------------------------------------------------------------------
def _ensure_xformers_stub():
import sys
if 'xformers.ops' in sys.modules:
return
import torch.nn.functional as F
xf_mod = types.ModuleType('xformers')
ops_mod = types.ModuleType('xformers.ops')
def memory_efficient_attention(query, key, value, attn_bias=None):
# SDPA fallback
return F.scaled_dot_product_attention(query, key, value, attn_bias)
ops_mod.memory_efficient_attention = memory_efficient_attention
xf_mod.ops = ops_mod
sys.modules['xformers'] = xf_mod
sys.modules['xformers.ops'] = ops_mod
_ensure_xformers_stub()
# ---------------------------------------------------------------------------
# Patch CUDA hotspots to CPU **BEFORE** importing the pipeline
# ---------------------------------------------------------------------------
print("[PATCH] Applying CPU monkey-patches to hi3dgen")
# 1) utils_cube.construct_dense_grid(..., device=...) -> force CPU
uc = importlib.import_module("hi3dgen.representations.mesh.utils_cube")
if not hasattr(uc, "_CPU_PATCHED"):
_uc_orig_construct_dense_grid = uc.construct_dense_grid
def _construct_dense_grid_cpu(res, device=None):
# ignore any requested device, always CPU
return _uc_orig_construct_dense_grid(res, device="cpu")
uc.construct_dense_grid = _construct_dense_grid_cpu
uc._CPU_PATCHED = True
print("[PATCH] utils_cube.construct_dense_grid -> CPU")
# 2) cube2mesh.EnhancedMarchingCubes default device -> force CPU (flexible)
cm = importlib.import_module("hi3dgen.representations.mesh.cube2mesh")
M = cm.EnhancedMarchingCubes
if not hasattr(M, "_CPU_PATCHED"):
_orig_init = M.__init__
def _init_cpu(self, *args, **kwargs):
# ensure device ends up on CPU regardless of how it's passed
if "device" in kwargs:
kwargs["device"] = torch.device("cpu")
else:
kwargs.setdefault("device", torch.device("cpu"))
return _orig_init(self, *args, **kwargs)
M.__init__ = _init_cpu
M._CPU_PATCHED = True
print("[PATCH] cube2mesh.EnhancedMarchingCubes.__init__ -> CPU (flex)")
# 3) IMPORTANT: cube2mesh does "from .utils_cube import construct_dense_grid"
# so we must override the BOUND symbol inside cube2mesh as well.
if getattr(cm, "construct_dense_grid", None) is not _construct_dense_grid_cpu:
cm.construct_dense_grid = _construct_dense_grid_cpu
print("[PATCH] cube2mesh.construct_dense_grid (bound name) -> CPU")
# 4) Belt & suspenders: coerce torch.arange(device='cuda') to CPU if anything slips through
if not hasattr(torch, "_ARANGE_CPU_PATCHED"):
_orig_arange = torch.arange
def _arange_cpu(*args, **kwargs):
dev = kwargs.get("device", None)
if dev is not None and str(dev).startswith("cuda"):
kwargs["device"] = "cpu"
return _orig_arange(*args, **kwargs)
torch.arange = _arange_cpu
torch._ARANGE_CPU_PATCHED = True
print("[PATCH] torch.arange(device='cuda') -> CPU")
# ---------------------------------------------------------------------------
# Now import pipeline (AFTER patches so bound names are already overridden)
# ---------------------------------------------------------------------------
from hi3dgen.pipelines import Hi3DGenPipeline
import trimesh
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
WEIGHTS_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'weights')
os.makedirs(TMP_DIR, exist_ok=True)
os.makedirs(WEIGHTS_DIR, exist_ok=True)
# ---------------------------------------------------------------------------
# Weights caching
# ---------------------------------------------------------------------------
def cache_weights(weights_dir: str) -> dict:
from huggingface_hub import snapshot_download
os.makedirs(weights_dir, exist_ok=True)
model_ids = [
"Stable-X/trellis-normal-v0-1",
"Stable-X/yoso-normal-v1-8-1",
"ZhengPeng7/BiRefNet",
]
cached_paths = {}
for model_id in model_ids:
print(f"Caching weights for: {model_id}")
local_path = os.path.join(weights_dir, model_id.split("/")[-1])
if os.path.exists(local_path):
print(f"Already cached at: {local_path}")
cached_paths[model_id] = local_path
continue
print(f"Downloading and caching model: {model_id}")
local_path = snapshot_download(
repo_id=model_id,
local_dir=os.path.join(weights_dir, model_id.split("/")[-1]),
force_download=False
)
cached_paths[model_id] = local_path
print(f"Cached at: {local_path}")
return cached_paths
# ---------------------------------------------------------------------------
# Pre/Post processing and generation
# ---------------------------------------------------------------------------
def preprocess_mesh(mesh_prompt):
print("Processing mesh")
trimesh_mesh = trimesh.load_mesh(mesh_prompt)
out_path = mesh_prompt + '.glb'
trimesh_mesh.export(out_path)
return out_path
def preprocess_image(image):
if image is None:
return None
return hi3dgen_pipeline.preprocess_image(image, resolution=1024)
def generate_3d(
image,
seed: int = -1,
ss_guidance_strength: float = 3,
ss_sampling_steps: int = 50,
slat_guidance_strength: float = 3,
slat_sampling_steps: int = 6,
):
if image is None:
return None, None, None
if seed == -1:
seed = np.random.randint(0, MAX_SEED)
image = hi3dgen_pipeline.preprocess_image(image, resolution=1024)
normal_image = normal_predictor(
image,
resolution=768,
match_input_resolution=True,
data_type='object'
)
outputs = hi3dgen_pipeline.run(
normal_image,
seed=seed,
formats=["mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
generated_mesh = outputs['mesh'][0]
import datetime
output_id = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
os.makedirs(os.path.join(TMP_DIR, output_id), exist_ok=True)
mesh_path = f"{TMP_DIR}/{output_id}/mesh.glb"
trimesh_mesh = generated_mesh.to_trimesh(transform_pose=True)
trimesh_mesh.export(mesh_path)
return normal_image, mesh_path, mesh_path
def convert_mesh(mesh_path, export_format):
if not mesh_path:
return None
temp_file = tempfile.NamedTemporaryFile(suffix=f".{export_format}", delete=False)
temp_file_path = temp_file.name
mesh = trimesh.load_mesh(mesh_path)
mesh.export(temp_file_path)
return temp_file_path
# ---------------------------------------------------------------------------
# UI
# ---------------------------------------------------------------------------
with gr.Blocks(css="footer {visibility: hidden}") as demo:
gr.Markdown(
"""
<h1 style='text-align: center;'>Hi3DGen: High-fidelity 3D Geometry Generation from Images via Normal Bridging</h1>
<p style='text-align: center;'>
<strong>V0.1, Introduced By
<a href="https://gaplab.cuhk.edu.cn/" target="_blank">GAP Lab</a> (CUHKSZ) and
<a href="https://www.nvsgames.cn/" target="_blank">Game-AIGC Team</a> (ByteDance)</strong>
</p>
"""
)
with gr.Row():
gr.Markdown("""
<p align="center">
<a title="Website" href="https://stable-x.github.io/Hi3DGen/" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-website.svg">
</a>
<a title="arXiv" href="https://stable-x.github.io/Hi3DGen/hi3dgen_paper.pdf" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-pdf.svg">
</a>
<a title="Github" href="https://github.com/Stable-X/Hi3DGen" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://img.shields.io/github/stars/Stable-X/Hi3DGen?label=GitHub%20%E2%98%85&logo=github&color=C8C" alt="badge-github-stars">
</a>
<a title="Social" href="https://x.com/ychngji6" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
<img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
</a>
</p>
""")
with gr.Row():
with gr.Column(scale=1):
with gr.Tabs():
with gr.Tab("Single Image"):
with gr.Row():
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil")
normal_output = gr.Image(label="Normal Bridge", image_mode="RGBA", type="pil")
with gr.Tab("Multiple Images"):
gr.Markdown(
"<div style='text-align: center; padding: 40px; font-size: 24px;'>Multiple Images functionality is coming soon!</div>"
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(-1, MAX_SEED, label="Seed", value=0, step=1)
gr.Markdown("#### Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=50, step=1)
gr.Markdown("#### Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=6, step=1)
with gr.Group():
with gr.Row():
gen_shape_btn = gr.Button("Generate Shape", size="lg", variant="primary")
with gr.Column(scale=1):
with gr.Column():
model_output = gr.Model3D(label="3D Model Preview (Each model is ~40MB; may take ~1 min to load)")
with gr.Column():
export_format = gr.Dropdown(
choices=["obj", "glb", "ply", "stl"],
value="glb",
label="File Format"
)
download_btn = gr.DownloadButton(label="Export Mesh", interactive=False)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt]
)
gen_shape_btn.click(
generate_3d,
inputs=[
image_prompt, seed,
ss_guidance_strength, ss_sampling_steps,
slat_guidance_strength, slat_sampling_steps
],
outputs=[normal_output, model_output, download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
def update_download_button(mesh_path, export_format):
if not mesh_path:
return gr.File.update(value=None, interactive=False)
download_path = convert_mesh(mesh_path, export_format)
return download_path
export_format.change(
update_download_button,
inputs=[model_output, export_format],
outputs=[download_btn]
).then(
lambda: gr.Button(interactive=True),
outputs=[download_btn],
)
examples = None
gr.Markdown(
"""
**Acknowledgments**: Hi3DGen is built on the shoulders of giants. We would like to express our gratitude to the open-source research community and the developers of these pioneering projects:
- **3D Modeling:** Finetuned from the SOTA open-source 3D foundation model [Trellis].
- **Normal Estimation:** Builds on StableNormal and GenPercept.
"""
)
# ---------------------------------------------------------------------------
# Entry
# ---------------------------------------------------------------------------
if __name__ == "__main__":
# Cache model weights locally
cache_weights(WEIGHTS_DIR)
# Load pipeline on CPU
hi3dgen_pipeline = Hi3DGenPipeline.from_pretrained("weights/trellis-normal-v0-1")
try:
hi3dgen_pipeline.to("cpu")
except Exception:
pass # some pipelines may not implement .to
# Initialize normal predictor (CPU)
try:
normal_predictor = torch.hub.load(
os.path.join(torch.hub.get_dir(), 'hugoycj_StableNormal_main'),
"StableNormal_turbo",
yoso_version='yoso-normal-v1-8-1',
source='local',
local_cache_dir='./weights',
pretrained=True
)
except Exception:
normal_predictor = torch.hub.load(
"hugoycj/StableNormal",
"StableNormal_turbo",
trust_repo=True,
yoso_version='yoso-normal-v1-8-1',
local_cache_dir='./weights'
)
try:
normal_predictor.to("cpu")
except Exception:
pass
# Launch the Gradio app
demo.launch(share=False, server_name="0.0.0.0")
|