Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,96 +1,31 @@
|
|
1 |
-
# Importing some modules
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
|
5 |
-
#
|
6 |
MODEL_AGE = pipeline('image-classification', model='nateraw/vit-age-classifier', device=-1)
|
7 |
-
MODEL_EMOTION = pipeline('image-classification', model='dennisjooo/emotion_classification', device=-1)
|
8 |
|
9 |
-
def
|
10 |
-
# Getting the classification result
|
11 |
age_result = MODEL_AGE(image)
|
12 |
-
|
13 |
-
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
case "40-49":
|
36 |
-
return "You're still young at heart!"
|
37 |
-
case "50-59":
|
38 |
-
return "Retirement is just around the corner!"
|
39 |
-
case "60-69":
|
40 |
-
return "You're a senior citizen now!"
|
41 |
-
case "more than 70":
|
42 |
-
return "Hey Siri, play 'My Way' by Frank Sinatra"
|
43 |
-
|
44 |
-
|
45 |
-
if __name__ == "__main__":
|
46 |
-
# Definining the title of the interface
|
47 |
-
title_text = """
|
48 |
-
# I will guess your age and mood based on your picture!
|
49 |
-
---
|
50 |
-
Totally not creepy, I promise :)
|
51 |
-
<br>Made by [Andrew]. A project for REA Mastering AI course.
|
52 |
-
Age guessing model from [nateraw/vit-age-classifier](https://huggingface.co/nateraw/vit-age-classifier)
|
53 |
-
<br>Mood-guessing model is a [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k)
|
54 |
-
trained on [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis)
|
55 |
-
"""
|
56 |
-
|
57 |
-
# Creating the Gradio interface
|
58 |
-
with gr.Blocks() as demo:
|
59 |
-
gr.Markdown(title_text)
|
60 |
-
with gr.Row(equal_height=True):
|
61 |
-
with gr.Column():
|
62 |
-
# Creating the input block
|
63 |
-
image = gr.Image(label="Upload a picture of yourself", type="pil", scale=2)
|
64 |
-
|
65 |
-
# Creating the example block
|
66 |
-
gr.Examples(examples=[
|
67 |
-
"./images/andrew.jpg",
|
68 |
-
"./images/feifei.jpg",
|
69 |
-
"./images/geoff.jpg",
|
70 |
-
"./images/ilya.jpg",
|
71 |
-
"./images/karpathy.jpg",
|
72 |
-
"./images/lex.jpg"
|
73 |
-
], inputs=[image], label="Or choose an example")
|
74 |
-
|
75 |
-
|
76 |
-
with gr.Column():
|
77 |
-
# Getting the top k hyperparameter
|
78 |
-
top_k = gr.Number(label="How many guesses do I get?", value=1)
|
79 |
-
|
80 |
-
# Creating the output block
|
81 |
-
age_label = gr.Label(label="Hey it's me, your age!")
|
82 |
-
comment = gr.Textbox(label="Based on your age, I think you are...",
|
83 |
-
placeholder="I'm still learning, so I might be wrong!")
|
84 |
-
emotion_label = gr.Label(label="Hey it's me, your emotion!")
|
85 |
-
|
86 |
-
with gr.Row():
|
87 |
-
# Submit button
|
88 |
-
btn = gr.Button("Beep boop, guess my age and emotion!")
|
89 |
-
btn.click(classify_image, inputs=[image, top_k], outputs=[age_label, comment, emotion_label])
|
90 |
-
|
91 |
-
# Clear button
|
92 |
-
clear = gr.Button("Poof begone!")
|
93 |
-
clear.click(lambda: [None, None, None, None], inputs=[], outputs=[image, age_label, comment, emotion_label])
|
94 |
-
|
95 |
-
# Launching the interface
|
96 |
-
demo.launch(share=True, debug=True)
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Load the model
|
5 |
MODEL_AGE = pipeline('image-classification', model='nateraw/vit-age-classifier', device=-1)
|
|
|
6 |
|
7 |
+
def predict(image):
|
|
|
8 |
age_result = MODEL_AGE(image)
|
9 |
+
# Get the top prediction
|
10 |
+
top_age = age_result[0]['label']
|
11 |
+
# You can return a number or a string, but your iOS app expects a number
|
12 |
+
# Let's map the label to a representative age (e.g., the midpoint of the range)
|
13 |
+
age_map = {
|
14 |
+
"3-9": 6,
|
15 |
+
"10-19": 15,
|
16 |
+
"20-29": 25,
|
17 |
+
"30-39": 35,
|
18 |
+
"40-49": 45,
|
19 |
+
"50-59": 55,
|
20 |
+
"60-69": 65,
|
21 |
+
"more than 70": 75
|
22 |
+
}
|
23 |
+
return {"data": [age_map.get(top_age, 30)]}
|
24 |
+
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=predict,
|
27 |
+
inputs=gr.Image(type="pil"),
|
28 |
+
outputs=gr.Json()
|
29 |
+
)
|
30 |
+
|
31 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|