Spaces:
Sleeping
Sleeping
Commit
·
4d59f1b
1
Parent(s):
8500d79
Update app.py
Browse files
app.py
CHANGED
@@ -77,8 +77,12 @@ def make_prediction(image, taxonomic_decision, taxonomic_level):
|
|
77 |
predicted_class_index = np.argmax(aggregated_predictions)
|
78 |
predicted_class_name = aggregated_class_labels[predicted_class_index]
|
79 |
|
80 |
-
#
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
|
83 |
# Add the top 5 predictions
|
84 |
output_text += "<h4 style='font-weight: bold; font-size: 1.2em;'>Top-5 predictions:</h4>"
|
@@ -148,6 +152,60 @@ def make_prediction(image, taxonomic_decision, taxonomic_level):
|
|
148 |
|
149 |
return output_text
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
# Define the Gradio interface
|
152 |
interface = gr.Interface(
|
153 |
fn=make_prediction, # Function to be called for predictions
|
|
|
77 |
predicted_class_index = np.argmax(aggregated_predictions)
|
78 |
predicted_class_name = aggregated_class_labels[predicted_class_index]
|
79 |
|
80 |
+
# Check if common name should be displayed (only at species level)
|
81 |
+
if taxonomic_levels[current_level_index] == "species":
|
82 |
+
predicted_common_name = taxo_df[taxo_df[taxonomic_levels[current_level_index]] == predicted_class_name]['common_name'].values[0]
|
83 |
+
output_text = f"<h1 style='font-weight: bold;'><span style='font-style: italic;'>{predicted_class_name}</span> ({predicted_common_name})</h1>"
|
84 |
+
else:
|
85 |
+
output_text = f"<h1 style='font-weight: bold;'>{predicted_class_name}</h1>"
|
86 |
|
87 |
# Add the top 5 predictions
|
88 |
output_text += "<h4 style='font-weight: bold; font-size: 1.2em;'>Top-5 predictions:</h4>"
|
|
|
152 |
|
153 |
return output_text
|
154 |
|
155 |
+
# Confidence checking for the automatic model decision
|
156 |
+
# Loop through taxonomic levels if the user lets the model decide
|
157 |
+
while current_level_index < len(taxonomic_levels):
|
158 |
+
# Aggregate predictions for the next level
|
159 |
+
aggregated_predictions, aggregated_class_labels = aggregate_predictions(prediction, taxonomic_levels[current_level_index], class_names)
|
160 |
+
|
161 |
+
# Check if the confidence of the top prediction meets the threshold
|
162 |
+
top_prediction_index = np.argmax(aggregated_predictions)
|
163 |
+
top_prediction_confidence = aggregated_predictions[0][top_prediction_index]
|
164 |
+
|
165 |
+
if top_prediction_confidence >= 0.80:
|
166 |
+
break # Confidence threshold met, exit loop
|
167 |
+
|
168 |
+
current_level_index += 1 # Move to the next taxonomic level
|
169 |
+
|
170 |
+
# Check if a valid prediction was made
|
171 |
+
if current_level_index == len(taxonomic_levels):
|
172 |
+
return "<h1 style='font-weight: bold;'>Unknown animal</h1>" # No valid predictions met the confidence criteria
|
173 |
+
|
174 |
+
# Get the predicted class name for the top prediction
|
175 |
+
predicted_class_index = np.argmax(aggregated_predictions)
|
176 |
+
predicted_class_name = aggregated_class_labels[predicted_class_index]
|
177 |
+
|
178 |
+
# Check if common name should be displayed (only at species level)
|
179 |
+
if taxonomic_levels[current_level_index] == "species":
|
180 |
+
predicted_common_name = taxo_df[taxo_df[taxonomic_levels[current_level_index]] == predicted_class_name]['common_name'].values[0]
|
181 |
+
output_text = f"<h1 style='font-weight: bold;'><span style='font-style: italic;'>{predicted_class_name}</span> ({predicted_common_name})</h1>"
|
182 |
+
else:
|
183 |
+
output_text = f"<h1 style='font-weight: bold;'>{predicted_class_name}</h1>"
|
184 |
+
|
185 |
+
# Add the top 5 predictions
|
186 |
+
output_text += "<h4 style='font-weight: bold; font-size: 1.2em;'>Top-5 predictions:</h4>"
|
187 |
+
|
188 |
+
top_indices = np.argsort(aggregated_predictions[0])[-5:][::-1] # Get top 5 predictions
|
189 |
+
|
190 |
+
for i in top_indices:
|
191 |
+
class_name = aggregated_class_labels[i]
|
192 |
+
|
193 |
+
if taxonomic_levels[current_level_index] == "species":
|
194 |
+
# Display common names only at species level and make it italic
|
195 |
+
common_name = taxo_df[taxo_df[taxonomic_levels[current_level_index]] == class_name]['common_name'].values[0]
|
196 |
+
confidence_percentage = aggregated_predictions[0][i] * 100
|
197 |
+
output_text += f"<div style='display: flex; justify-content: space-between;'>" \
|
198 |
+
f"<span style='font-style: italic;'>{class_name}</span> (<span>{common_name}</span>)" \
|
199 |
+
f"<span style='margin-left: auto;'>{confidence_percentage:.2f}%</span></div>"
|
200 |
+
else:
|
201 |
+
# No common names at higher taxonomic levels
|
202 |
+
confidence_percentage = aggregated_predictions[0][i] * 100
|
203 |
+
output_text += f"<div style='display: flex; justify-content: space-between;'>" \
|
204 |
+
f"<span>{class_name}</span>" \
|
205 |
+
f"<span style='margin-left: auto;'>{confidence_percentage:.2f}%</span></div>"
|
206 |
+
|
207 |
+
return output_text
|
208 |
+
|
209 |
# Define the Gradio interface
|
210 |
interface = gr.Interface(
|
211 |
fn=make_prediction, # Function to be called for predictions
|