anezatra commited on
Commit
6ca078e
·
verified ·
1 Parent(s): 3d2c75e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -60
app.py CHANGED
@@ -1,63 +1,52 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
-
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
+ !pip install gradio
2
  import gradio as gr
3
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
4
+
5
+ model_name = "anezatra/gpt2_openassistant_guanaco"
6
+ model = GPT2LMHeadModel.from_pretrained(model_name)
7
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
8
+
9
+ def respond(message):
10
+ prompt = f"{message}"
11
+
12
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
13
+ outputs = model.generate(
14
+ inputs,
15
+ temperature=0.8,
16
+ max_new_tokens=200,
17
+ top_k=1,
18
+ num_return_sequences=1,
19
+ no_repeat_ngram_size=2,
20
+ do_sample=True,
21
+ )
22
+
23
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("### Assistant:")[-1].strip()
24
+ return response
25
+
26
+ banner = gr.HTML("""
27
+ <h1 style="color: #000; font-weight: bold; text-align: center;">
28
+ OPENASSISTANT
29
+ </h1>
30
+ <p style="color: #000; font-weight: bold;">GPT-2 MEDIUM CHATBOT</p>
31
+ """)
32
+
33
+ with gr.Blocks(theme=gr.Theme.from_hub('gradio/monochrome')) as demo:
34
+ banner.render()
35
+
36
+ chatbot = gr.Chatbot()
37
+ msg = gr.Textbox(label="Write your message")
38
+
39
+ with gr.Row():
40
+ clear = gr.Button("Clear chat")
41
+ submit = gr.Button("Send message")
42
+
43
+ def user_input(user_message):
44
+ response = respond(user_message)
45
+ return "", [[user_message, response]]
46
+
47
+ msg.submit(user_input, [msg], [msg, chatbot], queue=False)
48
+ clear.click(lambda: None, None, chatbot, queue=False)
49
+ submit.click(lambda: msg.submit(), None, chatbot, queue=False)
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  if __name__ == "__main__":
52
+ demo.launch(share=True)