Spaces:
Configuration error
Configuration error
File size: 10,098 Bytes
a21e693 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import os
import torch
import gradio as gr
from PIL import Image
from diffusers import StableDiffusionPipeline, DiffusionPipeline
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from tqdm.auto import tqdm
import torchvision.transforms as T
import torch.nn.functional as F
import gc
# Configure constants
HEIGHT, WIDTH = 512, 512
GUIDANCE_SCALE = 8
LOSS_SCALE = 200
NUM_INFERENCE_STEPS = 50
BATCH_SIZE = 1
DEFAULT_PROMPT = "A deadly witcher slinging a sword with a lion medallion in his neck, casting a fire spell from his hand in a snowy forest"
# Define the device
TORCH_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
# Initialize the elastic transformer
elastic_transformer = T.ElasticTransform(alpha=550.0, sigma=5.0)
# Load the model
def load_model():
pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16 if TORCH_DEVICE == "cuda" else torch.float32
).to(TORCH_DEVICE)
# Load textual inversion concepts
try:
pipe.load_textual_inversion("sd-concepts-library/rimworld-art-style", mean_resizing=False)
pipe.load_textual_inversion("sd-concepts-library/hk-goldenlantern", mean_resizing=False)
pipe.load_textual_inversion("sd-concepts-library/phoenix-01", mean_resizing=False)
pipe.load_textual_inversion("sd-concepts-library/fractal-flame", mean_resizing=False)
pipe.load_textual_inversion("sd-concepts-library/scarlet-witch", mean_resizing=False)
except Exception as e:
print(f"Warning: Could not load all textual inversion concepts: {e}")
return pipe
# Helper functions
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def image_loss(images, loss_type):
if loss_type == 'blue':
# blue loss
error = torch.abs(images[:,2] - 0.9).mean()
elif loss_type == 'elastic':
# elastic loss
transformed_imgs = elastic_transformer(images)
error = torch.abs(transformed_imgs - images).mean()
elif loss_type == 'symmetry':
flipped_image = torch.flip(images, [3])
error = F.mse_loss(images, flipped_image)
elif loss_type == 'saturation':
# saturation loss
transformed_imgs = T.functional.adjust_saturation(images, saturation_factor=10)
error = torch.abs(transformed_imgs - images).mean()
else:
print("Error. Loss not defined")
error = torch.tensor(0.0)
return error
def latents_to_pil(latents, pipe):
# batch of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = pipe.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def generate_image(pipe, seed_no, prompts, loss_type, loss_apply=False, progress=gr.Progress()):
# Initialization and Setup
generator = torch.manual_seed(seed_no)
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000
)
scheduler.set_timesteps(NUM_INFERENCE_STEPS)
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
# Text Processing
text_input = pipe.tokenizer(
prompts,
padding='max_length',
max_length=pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
)
input_ids = text_input.input_ids.to(TORCH_DEVICE)
# Convert text inputs to embeddings
with torch.no_grad():
text_embeddings = pipe.text_encoder(input_ids)[0]
# Handle padding and truncation of text inputs
max_length = text_input.input_ids.shape[-1]
uncond_input = pipe.tokenizer(
[""] * BATCH_SIZE,
padding="max_length",
max_length=max_length,
return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(TORCH_DEVICE))[0]
# Concatenate unconditioned and text embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Create random initial latents
latents = torch.randn(
(BATCH_SIZE, pipe.unet.config.in_channels, HEIGHT // 8, WIDTH // 8),
generator=generator,
)
# Move latents to device and apply noise scaling
if TORCH_DEVICE == "cuda":
latents = latents.to(torch.float16)
latents = latents.to(TORCH_DEVICE)
latents = latents * scheduler.init_noise_sigma
# Diffusion Process
for i, t in progress.tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps)):
# Process the latent model input
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings
)["sample"]
# Apply noise prediction
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_text - noise_pred_uncond)
# Apply loss if requested
if loss_apply and i % 5 == 0:
latents = latents.detach().requires_grad_()
latents_x0 = latents - sigma * noise_pred
# Use VAE to decode the image
denoised_images = pipe.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
# Apply loss
loss = image_loss(denoised_images, loss_type) * LOSS_SCALE
print(f"Step {i}, Loss: {loss.item()}")
# Compute gradients for optimization
cond_grad = torch.autograd.grad(loss, latents)[0]
latents = latents.detach() - cond_grad * sigma**2
# Update latents using the scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
return latents
def generate_images(prompt, loss_type, apply_loss, seeds, pipe):
latents_collect = []
# Convert comma-separated string to list and clean
seeds = [int(seed.strip()) for seed in seeds.split(',') if seed.strip()]
if not seeds:
seeds = [1000] # Default seed if none provided
# List of SD concepts (can be empty if not used)
sdconcepts = [''] * len(seeds)
# Generate images for each seed
for seed_no, sd in zip(seeds, sdconcepts):
# Clear CUDA cache
if TORCH_DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
torch.cuda.empty_cache()
# Generate image
prompts = [f'{prompt} {sd}']
latents = generate_image(pipe, seed_no, prompts, loss_type, loss_apply=apply_loss)
latents_collect.append(latents)
# Stack latents and convert to images
latents_collect = torch.vstack(latents_collect)
images = latents_to_pil(latents_collect, pipe)
# Create image grid
if len(images) > 1:
result = image_grid(images, 1, len(images))
return result
else:
return images[0]
# Gradio Interface
def create_interface():
pipe = load_model()
with gr.Blocks(title="Stable Diffusion Text Inversion with Loss Functions") as app:
gr.Markdown("""
# Stable Diffusion Text Inversion with Loss Functions
Generate images using Stable Diffusion with various loss functions to guide the diffusion process.
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
value=DEFAULT_PROMPT,
lines=3
)
loss_type = gr.Radio(
label="Loss Type",
choices=["N/A", "blue", "elastic", "symmetry", "saturation"],
value="N/A"
)
apply_loss = gr.Checkbox(
label="Apply Loss Function",
value=False
)
seeds = gr.Textbox(
label="Seeds (comma-separated)",
value="3000,2000,1000",
lines=1
)
generate_btn = gr.Button("Generate Images")
with gr.Column():
output_image = gr.Image(label="Generated Image")
generate_btn.click(
fn=lambda p, lt, al, s: generate_images(p, lt, al, s, pipe),
inputs=[prompt, loss_type, apply_loss, seeds],
outputs=output_image
)
gr.Markdown("""
## About the Loss Functions
- **Blue**: Encourages more blue tones in the image
- **Elastic**: Creates distortion effects by minimizing differences with elastically transformed versions
- **Symmetry**: Encourages symmetrical images by minimizing differences with horizontally flipped versions
- **Saturation**: Increases color saturation in the image
Set "N/A" and uncheck "Apply Loss Function" for normal image generation.
""")
return app
if __name__ == "__main__":
# Create and launch the interface
app = create_interface()
app.launch() |