Spaces:
Sleeping
Sleeping
File size: 14,989 Bytes
cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 17b1c77 ec9e2d7 cba7cd1 ec9e2d7 17b1c77 ec9e2d7 17b1c77 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 0822af2 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 ec9e2d7 cba7cd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
import os
import torch
import gradio as gr
from PIL import Image
from diffusers import StableDiffusionPipeline, DiffusionPipeline
from diffusers import AutoencoderKL, LMSDiscreteScheduler, UNet2DConditionModel
from tqdm.auto import tqdm
import torchvision.transforms as T
import torch.nn.functional as F
import gc
import signal
import time
import traceback
# Configure constants - optimized for CPU
HEIGHT, WIDTH = 384, 384 # Smaller images use less memory
GUIDANCE_SCALE = 7.5
LOSS_SCALE = 200
NUM_INFERENCE_STEPS = 30 # Reduced from 50
BATCH_SIZE = 1
DEFAULT_PROMPT = "A deadly witcher slinging a sword with a lion medallion in his neck, casting a fire spell from his hand in a snowy forest"
# Define the device
TORCH_DEVICE = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
print(f"Using device: {TORCH_DEVICE}")
# Initialize the elastic transformer
elastic_transformer = T.ElasticTransform(alpha=550.0, sigma=5.0)
# Timeout handler for CPU processing
def timeout_handler(signum, frame):
raise TimeoutError("Image generation took too long")
# Load the model
def load_model():
try:
# Initialize signal handler only on Unix-like systems
if TORCH_DEVICE == "cpu" and hasattr(signal, 'SIGALRM'):
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(2100) # 15 minutes timeout for model loading
pipe = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
torch_dtype=torch.float16 if TORCH_DEVICE == "cuda" else torch.float32,
safety_checker=None, # Disable safety checker for memory
low_cpu_mem_usage=True # Enable memory optimization
).to(TORCH_DEVICE)
# Load textual inversion for all devices including CPU
try:
# Load one at a time with memory cleanup between each
concepts = [
"sd-concepts-library/rimworld-art-style",
"sd-concepts-library/hk-goldenlantern",
"sd-concepts-library/phoenix-01",
"sd-concepts-library/fractal-flame",
"sd-concepts-library/scarlet-witch"
]
for concept in concepts:
try:
print(f"Loading textual inversion concept: {concept}")
pipe.load_textual_inversion(concept, mean_resizing=False)
# Clear memory after loading each concept
if TORCH_DEVICE == "cpu":
gc.collect()
except Exception as e:
print(f"Warning: Could not load textual inversion concept {concept}: {e}")
except Exception as e:
print(f"Warning: Could not load textual inversion concepts: {e}")
# Clear the alarm if set
if TORCH_DEVICE == "cpu" and hasattr(signal, 'SIGALRM'):
signal.alarm(0)
return pipe
except Exception as e:
# Clear the alarm if set
if TORCH_DEVICE == "cpu" and hasattr(signal, 'SIGALRM'):
signal.alarm(0)
print(f"Error loading model: {e}")
traceback.print_exc()
raise
# Helper functions
def image_grid(imgs, rows, cols):
assert len(imgs) == rows*cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def image_loss(images, loss_type):
if loss_type == 'blue':
# blue loss
error = torch.abs(images[:,2] - 0.9).mean()
elif loss_type == 'elastic':
# elastic loss
transformed_imgs = elastic_transformer(images)
error = torch.abs(transformed_imgs - images).mean()
elif loss_type == 'symmetry':
flipped_image = torch.flip(images, [3])
error = F.mse_loss(images, flipped_image)
elif loss_type == 'saturation':
# saturation loss
transformed_imgs = T.functional.adjust_saturation(images, saturation_factor=10)
error = torch.abs(transformed_imgs - images).mean()
else:
print("Error. Loss not defined")
error = torch.tensor(0.0)
return error
def latents_to_pil(latents, pipe):
# batch of latents -> list of images
latents = (1 / 0.18215) * latents
with torch.no_grad():
image = pipe.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def generate_image(pipe, seed_no, prompts, loss_type, loss_apply=False, progress=gr.Progress()):
try:
# Set timeout for CPU
if TORCH_DEVICE == "cpu":
signal.signal(signal.SIGALRM, timeout_handler)
signal.alarm(600) # 10 minute timeout
# Initialization and Setup
generator = torch.manual_seed(seed_no)
scheduler = LMSDiscreteScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000
)
scheduler.set_timesteps(NUM_INFERENCE_STEPS)
scheduler.timesteps = scheduler.timesteps.to(torch.float32)
# Text Processing
text_input = pipe.tokenizer(
prompts,
padding='max_length',
max_length=pipe.tokenizer.model_max_length,
truncation=True,
return_tensors="pt"
)
input_ids = text_input.input_ids.to(TORCH_DEVICE)
# Convert text inputs to embeddings
with torch.no_grad():
text_embeddings = pipe.text_encoder(input_ids)[0]
# Handle padding and truncation of text inputs
max_length = text_input.input_ids.shape[-1]
uncond_input = pipe.tokenizer(
[""] * BATCH_SIZE,
padding="max_length",
max_length=max_length,
return_tensors="pt"
)
with torch.no_grad():
uncond_embeddings = pipe.text_encoder(uncond_input.input_ids.to(TORCH_DEVICE))[0]
# Concatenate unconditioned and text embeddings
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# Create random initial latents
latents = torch.randn(
(BATCH_SIZE, pipe.unet.config.in_channels, HEIGHT // 8, WIDTH // 8),
generator=generator,
)
# Move latents to device and apply noise scaling
if TORCH_DEVICE == "cuda":
latents = latents.to(torch.float16)
latents = latents.to(TORCH_DEVICE)
latents = latents * scheduler.init_noise_sigma
# Diffusion Process
timesteps = scheduler.timesteps
progress(0, desc="Generating")
# Fixed loop - separate the progress tracking from the enumeration
for i in range(len(timesteps)):
progress((i + 1) / len(timesteps), desc=f"Diffusion step {i+1}/{len(timesteps)}")
t = timesteps[i]
# Process the latent model input
latent_model_input = torch.cat([latents] * 2)
sigma = scheduler.sigmas[i]
latent_model_input = scheduler.scale_model_input(latent_model_input, t)
with torch.no_grad():
noise_pred = pipe.unet(
latent_model_input,
t,
encoder_hidden_states=text_embeddings
)["sample"]
# Apply noise prediction
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_text - noise_pred_uncond)
# Apply loss if requested
if loss_apply and i % 5 == 0 and loss_type != "N/A":
latents = latents.detach().requires_grad_()
latents_x0 = latents - sigma * noise_pred
# Use VAE to decode the image
denoised_images = pipe.vae.decode((1 / 0.18215) * latents_x0).sample / 2 + 0.5
# Apply loss
loss = image_loss(denoised_images, loss_type) * LOSS_SCALE
print(f"Step {i}, Loss: {loss.item()}")
# Compute gradients for optimization
cond_grad = torch.autograd.grad(loss, latents)[0]
latents = latents.detach() - cond_grad * sigma**2
# Update latents using the scheduler
latents = scheduler.step(noise_pred, t, latents).prev_sample
# Garbage collect every 5 steps if on CPU
if TORCH_DEVICE == "cpu" and i % 5 == 0:
gc.collect()
# Clear the alarm if set
if TORCH_DEVICE == "cpu":
signal.alarm(0)
return latents
except Exception as e:
print(f"Error in generate_image: {e}")
traceback.print_exc()
# Return empty latents as fallback
return torch.zeros(
(BATCH_SIZE, pipe.unet.config.in_channels, HEIGHT // 8, WIDTH // 8),
device=TORCH_DEVICE
)
def generate_images(prompt, loss_type, apply_loss, seeds, pipe, progress=gr.Progress()):
try:
images_list = []
# Convert comma-separated string to list and clean
seeds = [int(seed.strip()) for seed in seeds.split(',') if seed.strip()]
if not seeds:
seeds = [1000] # Default seed if none provided
# Process one seed at a time to save memory
for i, seed_no in enumerate(seeds):
progress((i / len(seeds)) * 0.1, desc=f"Starting seed {seed_no}")
# Clear memory
if TORCH_DEVICE == "cuda":
torch.cuda.empty_cache()
gc.collect()
try:
# Generate image
prompts = [prompt]
latents = generate_image(pipe, seed_no, prompts, loss_type, loss_apply=apply_loss, progress=progress)
pil_images = latents_to_pil(latents, pipe)
images_list.extend(pil_images)
except Exception as e:
print(f"Error generating image with seed {seed_no}: {e}")
# Create an error image
error_img = Image.new('RGB', (HEIGHT, WIDTH), color=(255, 0, 0))
images_list.append(error_img)
# Force garbage collection
gc.collect()
# Create image grid
if len(images_list) > 1:
result = image_grid(images_list, 1, len(images_list))
return result
else:
return images_list[0]
except Exception as e:
print(f"Error in generate_images: {e}")
traceback.print_exc()
# Create an error image
error_img = Image.new('RGB', (WIDTH, HEIGHT), color=(255, 0, 0))
return error_img
# Gradio Interface
def create_interface():
with gr.Blocks(title="Stable Diffusion Text Inversion with Loss Functions") as app:
gr.Markdown("""
# Stable Diffusion Text Inversion with Loss Functions
Generate images using Stable Diffusion with various loss functions to guide the diffusion process.
""")
if TORCH_DEVICE == "cpu":
gr.Markdown("""
⚠️ **Running on CPU**: Generation will be slow and memory-intensive.
Each image may take several minutes to generate.
""")
pipe = None # Initialize to None to avoid loading during interface creation
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label="Prompt",
value=DEFAULT_PROMPT,
lines=3
)
loss_type = gr.Radio(
label="Loss Type",
choices=["N/A", "blue", "elastic", "symmetry", "saturation"],
value="N/A"
)
apply_loss = gr.Checkbox(
label="Apply Loss Function",
value=False
)
if TORCH_DEVICE == "cpu":
seeds = gr.Textbox(
label="Seeds (comma-separated) - Use fewer seeds for CPU",
value="1000",
lines=1
)
else:
seeds = gr.Textbox(
label="Seeds (comma-separated)",
value="3000,2000,1000",
lines=1
)
# Load model button
load_model_btn = gr.Button("Load Model")
model_status = gr.Textbox(label="Model Status", value="Model not loaded", interactive=False)
generate_btn = gr.Button("Generate Images", interactive=False)
with gr.Column():
output_image = gr.Image(label="Generated Image")
def load_model_fn():
nonlocal pipe
try:
pipe = load_model()
return "Model loaded successfully", True
except Exception as e:
return f"Error loading model: {str(e)}", False
load_model_btn.click(
fn=load_model_fn,
inputs=[],
outputs=[model_status, generate_btn]
)
generate_btn.click(
fn=lambda p, lt, al, s, prog: generate_images(p, lt, al, s, pipe, prog),
inputs=[prompt, loss_type, apply_loss, seeds],
outputs=output_image
)
gr.Markdown("""
## About the Loss Functions
- **Blue**: Encourages more blue tones in the image
- **Elastic**: Creates distortion effects by minimizing differences with elastically transformed versions
- **Symmetry**: Encourages symmetrical images by minimizing differences with horizontally flipped versions
- **Saturation**: Increases color saturation in the image
Set "N/A" and uncheck "Apply Loss Function" for normal image generation.
""")
if TORCH_DEVICE == "cpu":
gr.Markdown("""
## CPU Mode Tips
- Use smaller prompts
- Process one seed at a time
- Be patient, generation can take 5-10 minutes per image
- If you encounter memory errors, try restarting the app and using even smaller dimensions
""")
return app
if __name__ == "__main__":
# Create and launch the interface
app = create_interface()
app.launch() |