from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import gradio as gr model_id = "deepseek-ai/deepseek-coder-1.3b-base" # change to your choice tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", torch_dtype="auto" ) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) def chat(prompt): result = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.2) return result[0]['generated_text'] iface = gr.Interface(fn=chat, inputs="text", outputs="text") iface.launch()