Spaces:
Running
on
Zero
Running
on
Zero
Upload infer.py
Browse files
infer.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# modified from https://github.com/ByteDance-Seed/Seed1.5-VL/blob/main/GradioDemo/infer.py
|
2 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
3 |
+
from transformers.generation.stopping_criteria import EosTokenCriteria, StoppingCriteriaList
|
4 |
+
from qwen_vl_utils import process_vision_info
|
5 |
+
from threading import Thread
|
6 |
+
|
7 |
+
|
8 |
+
class MiMoVLInfer:
|
9 |
+
def __init__(self, checkpoint_path, device='cuda', **kwargs):
|
10 |
+
self.model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
11 |
+
checkpoint_path, torch_dtype='auto', device_map=device, attn_implementation='flash_attention_2',
|
12 |
+
)
|
13 |
+
self.processor = AutoProcessor.from_pretrained(checkpoint_path)
|
14 |
+
|
15 |
+
def __call__(self, inputs: dict, history: list = [], temperature: float = 1.0):
|
16 |
+
messages = self.construct_messages(inputs)
|
17 |
+
updated_history = history + messages
|
18 |
+
text = self.processor.apply_chat_template(updated_history, tokenize=False, add_generation_prompt=True)
|
19 |
+
image_inputs, video_inputs = process_vision_info(updated_history)
|
20 |
+
model_inputs = self.processor(
|
21 |
+
text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors='pt'
|
22 |
+
).to(self.model.device)
|
23 |
+
tokenizer = self.processor.tokenizer
|
24 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
25 |
+
gen_kwargs = {
|
26 |
+
'max_new_tokens': 16000,
|
27 |
+
'streamer': streamer,
|
28 |
+
'stopping_criteria': StoppingCriteriaList([EosTokenCriteria(eos_token_id=self.model.config.eos_token_id)]),
|
29 |
+
'pad_token_id': self.model.config.eos_token_id,
|
30 |
+
**model_inputs
|
31 |
+
}
|
32 |
+
thread = Thread(target=self.model.generate, kwargs=gen_kwargs)
|
33 |
+
thread.start()
|
34 |
+
partial_response = ""
|
35 |
+
for new_text in streamer:
|
36 |
+
partial_response += new_text
|
37 |
+
yield partial_response, updated_history + [{
|
38 |
+
'role': 'assistant',
|
39 |
+
'content': [{
|
40 |
+
'type': 'text',
|
41 |
+
'text': partial_response
|
42 |
+
}]
|
43 |
+
}]
|
44 |
+
|
45 |
+
def _is_video_file(self, filename):
|
46 |
+
video_extensions = ['.mp4', '.avi', '.mkv', '.mov', '.wmv', '.flv', '.webm', '.mpeg']
|
47 |
+
return any(filename.lower().endswith(ext) for ext in video_extensions)
|
48 |
+
|
49 |
+
def construct_messages(self, inputs: dict) -> list:
|
50 |
+
content = []
|
51 |
+
for i, path in enumerate(inputs.get('files', [])):
|
52 |
+
if self._is_video_file(path):
|
53 |
+
content.append({
|
54 |
+
"type": "video",
|
55 |
+
"video": f'file://{path}'
|
56 |
+
})
|
57 |
+
else:
|
58 |
+
content.append({
|
59 |
+
"type": "image",
|
60 |
+
"image": f'file://{path}'
|
61 |
+
})
|
62 |
+
query = inputs.get('text', '')
|
63 |
+
if query:
|
64 |
+
content.append({
|
65 |
+
"type": "text",
|
66 |
+
"text": query,
|
67 |
+
})
|
68 |
+
messages = [{
|
69 |
+
"role": "user",
|
70 |
+
"content": content,
|
71 |
+
}]
|
72 |
+
return messages
|