# modified from https://github.com/QwenLM/Qwen2.5-VL/blob/main/qwen-vl-utils/src/qwen_vl_utils/vision_process.py from __future__ import annotations import base64 import copy import logging import math import os import sys import time import warnings from functools import lru_cache from io import BytesIO from typing import Optional import requests import torch import torchvision from packaging import version from PIL import Image from torchvision import io, transforms from torchvision.transforms import InterpolationMode logger = logging.getLogger(__name__) IMAGE_FACTOR = 28 MIN_PIXELS = 4 * 28 * 28 MAX_PIXELS = 16384 * 28 * 28 MAX_RATIO = 200 VIDEO_MIN_PIXELS = 128 * 28 * 28 VIDEO_MAX_PIXELS = 768 * 28 * 28 FRAME_FACTOR = 2 FPS = 2.0 FPS_MIN_FRAMES = 4 FPS_MAX_FRAMES = 768 # Set the maximum number of video token inputs. # Here, 128K represents the maximum number of input tokens for the VLLM model. # Remember to adjust it according to your own configuration. VIDEO_TOTAL_PIXELS = int(float(os.environ.get('VIDEO_MAX_PIXELS', 128000 * 28 * 28 * 0.9))) logger.info(f"set VIDEO_TOTAL_PIXELS: {VIDEO_TOTAL_PIXELS}") def round_by_factor(number: int, factor: int) -> int: """Returns the closest integer to 'number' that is divisible by 'factor'.""" return round(number / factor) * factor def ceil_by_factor(number: int, factor: int) -> int: """Returns the smallest integer greater than or equal to 'number' that is divisible by 'factor'.""" return math.ceil(number / factor) * factor def floor_by_factor(number: int, factor: int) -> int: """Returns the largest integer less than or equal to 'number' that is divisible by 'factor'.""" return math.floor(number / factor) * factor def smart_resize( height: int, width: int, factor: int = IMAGE_FACTOR, min_pixels: int = MIN_PIXELS, max_pixels: int = MAX_PIXELS ) -> tuple[int, int]: """ Rescales the image so that the following conditions are met: 1. Both dimensions (height and width) are divisible by 'factor'. 2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. 3. The aspect ratio of the image is maintained as closely as possible. """ if max(height, width) / min(height, width) > MAX_RATIO: raise ValueError( f"absolute aspect ratio must be smaller than {MAX_RATIO}, got {max(height, width) / min(height, width)}" ) h_bar = max(factor, round_by_factor(height, factor)) w_bar = max(factor, round_by_factor(width, factor)) if h_bar * w_bar > max_pixels: beta = math.sqrt((height * width) / max_pixels) h_bar = max(factor, floor_by_factor(height / beta, factor)) w_bar = max(factor, floor_by_factor(width / beta, factor)) elif h_bar * w_bar < min_pixels: beta = math.sqrt(min_pixels / (height * width)) h_bar = ceil_by_factor(height * beta, factor) w_bar = ceil_by_factor(width * beta, factor) return h_bar, w_bar def to_rgb(pil_image: Image.Image) -> Image.Image: if pil_image.mode == 'RGBA': white_background = Image.new("RGB", pil_image.size, (255, 255, 255)) white_background.paste(pil_image, mask=pil_image.split()[3]) # Use alpha channel as mask return white_background else: return pil_image.convert("RGB") def fetch_image(ele: dict[str, str | Image.Image], size_factor: int = IMAGE_FACTOR) -> Image.Image: if "image" in ele: image = ele["image"] else: image = ele["image_url"] image_obj = None if isinstance(image, Image.Image): image_obj = image elif image.startswith("http://") or image.startswith("https://"): # fix memory leak issue while using BytesIO with requests.get(image, stream=True) as response: response.raise_for_status() with BytesIO(response.content) as bio: image_obj = copy.deepcopy(Image.open(bio)) elif image.startswith("file://"): image_obj = Image.open(image[7:]) elif image.startswith("data:image"): if "base64," in image: _, base64_data = image.split("base64,", 1) data = base64.b64decode(base64_data) # fix memory leak issue while using BytesIO with BytesIO(data) as bio: image_obj = copy.deepcopy(Image.open(bio)) else: image_obj = Image.open(image) if image_obj is None: raise ValueError(f"Unrecognized image input, support local path, http url, base64 and PIL.Image, got {image}") image = to_rgb(image_obj) ## resize if "resized_height" in ele and "resized_width" in ele: resized_height, resized_width = smart_resize( ele["resized_height"], ele["resized_width"], factor=size_factor, ) else: width, height = image.size min_pixels = ele.get("min_pixels", MIN_PIXELS) max_pixels = ele.get("max_pixels", MAX_PIXELS) resized_height, resized_width = smart_resize( height, width, factor=size_factor, min_pixels=min_pixels, max_pixels=max_pixels, ) image = image.resize((resized_width, resized_height)) return image def smart_nframes( ele: dict, total_frames: int, video_fps: int | float, ) -> int: """calculate the number of frames for video used for model inputs. Args: ele (dict): a dict contains the configuration of video. support either `fps` or `nframes`: - nframes: the number of frames to extract for model inputs. - fps: the fps to extract frames for model inputs. - min_frames: the minimum number of frames of the video, only used when fps is provided. - max_frames: the maximum number of frames of the video, only used when fps is provided. total_frames (int): the original total number of frames of the video. video_fps (int | float): the original fps of the video. Raises: ValueError: nframes should in interval [FRAME_FACTOR, total_frames]. Returns: int: the number of frames for video used for model inputs. """ assert not ("fps" in ele and "nframes" in ele), "Only accept either `fps` or `nframes`" if "nframes" in ele: nframes = round_by_factor(ele["nframes"], FRAME_FACTOR) else: fps = ele.get("fps", FPS) min_frames = ceil_by_factor(ele.get("min_frames", FPS_MIN_FRAMES), FRAME_FACTOR) max_frames = floor_by_factor(ele.get("max_frames", min(FPS_MAX_FRAMES, total_frames)), FRAME_FACTOR) nframes = total_frames / video_fps * fps if nframes > total_frames: logger.warning(f"smart_nframes: nframes[{nframes}] > total_frames[{total_frames}]") nframes = min(min(max(nframes, min_frames), max_frames), total_frames) nframes = floor_by_factor(nframes, FRAME_FACTOR) if not (FRAME_FACTOR <= nframes and nframes <= total_frames): raise ValueError(f"nframes should in interval [{FRAME_FACTOR}, {total_frames}], but got {nframes}.") return nframes def _read_video_torchvision( ele: dict, ) -> (torch.Tensor, float): """read video using torchvision.io.read_video Args: ele (dict): a dict contains the configuration of video. support keys: - video: the path of video. support "file://", "http://", "https://" and local path. - video_start: the start time of video. - video_end: the end time of video. Returns: torch.Tensor: the video tensor with shape (T, C, H, W). """ video_path = ele["video"] if version.parse(torchvision.__version__) < version.parse("0.19.0"): if "http://" in video_path or "https://" in video_path: warnings.warn("torchvision < 0.19.0 does not support http/https video path, please upgrade to 0.19.0.") if "file://" in video_path: video_path = video_path[7:] st = time.time() video, audio, info = io.read_video( video_path, start_pts=ele.get("video_start", 0.0), end_pts=ele.get("video_end", None), pts_unit="sec", output_format="TCHW", ) total_frames, video_fps = video.size(0), info["video_fps"] logger.info(f"torchvision: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s") nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps) idx = torch.linspace(0, total_frames - 1, nframes).round().long() sample_fps = nframes / max(total_frames, 1e-6) * video_fps video = video[idx] return video, sample_fps def is_decord_available() -> bool: import importlib.util return importlib.util.find_spec("decord") is not None def calculate_video_frame_range( ele: dict, total_frames: int, video_fps: float, ) -> tuple[int, int, int]: """ Calculate the start and end frame indices based on the given time range. Args: ele (dict): A dictionary containing optional 'video_start' and 'video_end' keys (in seconds). total_frames (int): Total number of frames in the video. video_fps (float): Frames per second of the video. Returns: tuple: A tuple containing (start_frame, end_frame, frame_count). Raises: ValueError: If input parameters are invalid or the time range is inconsistent. """ # Validate essential parameters if video_fps <= 0: raise ValueError("video_fps must be a positive number") if total_frames <= 0: raise ValueError("total_frames must be a positive integer") # Get start and end time in seconds video_start = ele.get("video_start", None) video_end = ele.get("video_end", None) if video_start is None and video_end is None: return 0, total_frames - 1, total_frames max_duration = total_frames / video_fps # Process start frame if video_start is not None: video_start_clamped = max(0.0, min(video_start, max_duration)) start_frame = math.ceil(video_start_clamped * video_fps) else: start_frame = 0 # Process end frame if video_end is not None: video_end_clamped = max(0.0, min(video_end, max_duration)) end_frame = math.floor(video_end_clamped * video_fps) end_frame = min(end_frame, total_frames - 1) else: end_frame = total_frames - 1 # Validate frame order if start_frame >= end_frame: raise ValueError( f"Invalid time range: Start frame {start_frame} (at {video_start_clamped if video_start is not None else 0}s) " f"exceeds end frame {end_frame} (at {video_end_clamped if video_end is not None else max_duration}s). " f"Video duration: {max_duration:.2f}s ({total_frames} frames @ {video_fps}fps)" ) logger.info(f"calculate video frame range: {start_frame=}, {end_frame=}, {total_frames=} from {video_start=}, {video_end=}, {video_fps=:.3f}") return start_frame, end_frame, end_frame - start_frame + 1 def _read_video_decord( ele: dict, ) -> (torch.Tensor, float): """read video using decord.VideoReader Args: ele (dict): a dict contains the configuration of video. support keys: - video: the path of video. support "file://", "http://", "https://" and local path. - video_start: the start time of video. - video_end: the end time of video. Returns: torch.Tensor: the video tensor with shape (T, C, H, W). """ import decord video_path = ele["video"] st = time.time() vr = decord.VideoReader(video_path) total_frames, video_fps = len(vr), vr.get_avg_fps() start_frame, end_frame, total_frames = calculate_video_frame_range( ele, total_frames, video_fps, ) nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps) idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist() video = vr.get_batch(idx).asnumpy() video = torch.tensor(video).permute(0, 3, 1, 2) # Convert to TCHW format logger.info(f"decord: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s") sample_fps = nframes / max(total_frames, 1e-6) * video_fps return video, sample_fps def is_torchcodec_available() -> bool: """Check if torchcodec is available and properly installed.""" try: import importlib.util if importlib.util.find_spec("torchcodec") is None: return False from torchcodec.decoders import VideoDecoder return True except (ImportError, AttributeError, Exception): return False def _read_video_torchcodec( ele: dict, ) -> (torch.Tensor, float): """read video using torchcodec.decoders.VideoDecoder Args: ele (dict): a dict contains the configuration of video. support keys: - video: the path of video. support "file://", "http://", "https://" and local path. - video_start: the start time of video. - video_end: the end time of video. Returns: torch.Tensor: the video tensor with shape (T, C, H, W). """ from torchcodec.decoders import VideoDecoder TORCHCODEC_NUM_THREADS = int(os.environ.get('TORCHCODEC_NUM_THREADS', 8)) logger.info(f"set TORCHCODEC_NUM_THREADS: {TORCHCODEC_NUM_THREADS}") video_path = ele["video"] st = time.time() decoder = VideoDecoder(video_path, num_ffmpeg_threads=TORCHCODEC_NUM_THREADS) video_fps = decoder.metadata.average_fps total_frames = decoder.metadata.num_frames start_frame, end_frame, total_frames = calculate_video_frame_range( ele, total_frames, video_fps, ) nframes = smart_nframes(ele, total_frames=total_frames, video_fps=video_fps) idx = torch.linspace(start_frame, end_frame, nframes).round().long().tolist() sample_fps = nframes / max(total_frames, 1e-6) * video_fps video = decoder.get_frames_at(indices=idx).data logger.info(f"torchcodec: {video_path=}, {total_frames=}, {video_fps=}, time={time.time() - st:.3f}s") return video, sample_fps VIDEO_READER_BACKENDS = { "decord": _read_video_decord, "torchvision": _read_video_torchvision, "torchcodec": _read_video_torchcodec, } FORCE_QWENVL_VIDEO_READER = os.getenv("FORCE_QWENVL_VIDEO_READER", None) @lru_cache(maxsize=1) def get_video_reader_backend() -> str: if FORCE_QWENVL_VIDEO_READER is not None: video_reader_backend = FORCE_QWENVL_VIDEO_READER elif is_torchcodec_available(): video_reader_backend = "torchcodec" elif is_decord_available(): video_reader_backend = "decord" else: video_reader_backend = "torchvision" print(f"qwen-vl-utils using {video_reader_backend} to read video.", file=sys.stderr) return video_reader_backend def fetch_video(ele: dict, image_factor: int = IMAGE_FACTOR, return_video_sample_fps: bool = False) -> torch.Tensor | list[Image.Image]: if isinstance(ele["video"], str): video_reader_backend = get_video_reader_backend() try: video, sample_fps = VIDEO_READER_BACKENDS[video_reader_backend](ele) except Exception as e: logger.warning(f"video_reader_backend {video_reader_backend} error, use torchvision as default, msg: {e}") video, sample_fps = VIDEO_READER_BACKENDS["torchvision"](ele) nframes, _, height, width = video.shape min_pixels = ele.get("min_pixels", VIDEO_MIN_PIXELS) total_pixels = ele.get("total_pixels", VIDEO_TOTAL_PIXELS) max_pixels = max(min(VIDEO_MAX_PIXELS, total_pixels / nframes * FRAME_FACTOR), int(min_pixels * 1.05)) max_pixels_supposed = ele.get("max_pixels", max_pixels) if max_pixels_supposed > max_pixels: logger.warning(f"The given max_pixels[{max_pixels_supposed}] exceeds limit[{max_pixels}].") max_pixels = min(max_pixels_supposed, max_pixels) if "resized_height" in ele and "resized_width" in ele: resized_height, resized_width = smart_resize( ele["resized_height"], ele["resized_width"], factor=image_factor, ) else: resized_height, resized_width = smart_resize( height, width, factor=image_factor, min_pixels=min_pixels, max_pixels=max_pixels, ) video = transforms.functional.resize( video, [resized_height, resized_width], interpolation=InterpolationMode.BICUBIC, antialias=True, ).float() if return_video_sample_fps: return video, sample_fps return video else: assert isinstance(ele["video"], (list, tuple)) process_info = ele.copy() process_info.pop("type", None) process_info.pop("video", None) images = [ fetch_image({"image": video_element, **process_info}, size_factor=image_factor) for video_element in ele["video"] ] nframes = ceil_by_factor(len(images), FRAME_FACTOR) if len(images) < nframes: images.extend([images[-1]] * (nframes - len(images))) if return_video_sample_fps: return images, process_info.pop("fps", 2.0) return images def extract_vision_info(conversations: list[dict] | list[list[dict]]) -> list[dict]: vision_infos = [] if isinstance(conversations[0], dict): conversations = [conversations] for conversation in conversations: for message in conversation: if isinstance(message["content"], list): for ele in message["content"]: if ( "image" in ele or "image_url" in ele or "video" in ele or ele.get("type","") in ("image", "image_url", "video") ): vision_infos.append(ele) return vision_infos def process_vision_info( conversations: list[dict] | list[list[dict]], return_video_kwargs: bool = False, ) -> tuple[list[Image.Image] | None, list[torch.Tensor | list[Image.Image]] | None, Optional[dict]]: vision_infos = extract_vision_info(conversations) ## Read images or videos image_inputs = [] video_inputs = [] video_sample_fps_list = [] for vision_info in vision_infos: if "image" in vision_info or "image_url" in vision_info: image_inputs.append(fetch_image(vision_info)) elif "video" in vision_info: video_input, video_sample_fps = fetch_video(vision_info, return_video_sample_fps=True) video_sample_fps_list.append(video_sample_fps) video_inputs.append(video_input) else: raise ValueError("image, image_url or video should in content.") if len(image_inputs) == 0: image_inputs = None if len(video_inputs) == 0: video_inputs = None if return_video_kwargs: return image_inputs, video_inputs, {'fps': video_sample_fps_list} return image_inputs, video_inputs