File size: 5,578 Bytes
0628cbb
226da61
0628cbb
40b71eb
0628cbb
 
17d5dd8
8dfb503
 
1ab74f5
 
 
 
8dfb503
 
 
 
069e614
 
4a84d58
 
1ab74f5
 
 
 
8dfb503
1ab74f5
 
 
ca9cc5e
8bfb7cc
 
4a84d58
24f8abc
 
 
 
 
 
4a84d58
ca9cc5e
b8a9661
0d46e19
1ab74f5
4a84d58
8dfb503
4a84d58
 
b8a9661
0d46e19
8dfb503
4a84d58
ca9cc5e
 
4a84d58
24f8abc
17d5dd8
ca9cc5e
17d5dd8
ca9cc5e
 
17d5dd8
 
 
8bfb7cc
 
 
 
1ab74f5
8bfb7cc
8dfb503
4a84d58
8bfb7cc
5d2245e
 
4a84d58
069e614
226da61
4a84d58
069e614
d2770d0
069e614
4a84d58
5d2245e
226da61
4a84d58
069e614
 
58224c2
4a84d58
8bfb7cc
8dfb503
4a84d58
069e614
 
 
 
 
 
17a737c
727124b
 
 
 
 
4a84d58
b8a9661
727124b
ca9cc5e
 
 
 
 
 
b8a9661
8ecb645
b8a9661
4a84d58
b8a9661
 
 
 
4a84d58
 
b8a9661
727124b
 
ca9cc5e
 
b8a9661
 
8bfb7cc
 
0628cbb
17a737c
 
 
 
 
 
 
b8a9661
069e614
b8a9661
4a84d58
069e614
 
 
4a84d58
069e614
 
4a84d58
069e614
 
 
4a84d58
b8a9661
ca9cc5e
4a84d58
069e614
 
17a737c
 
 
 
 
e36ffb0
17a737c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import streamlit as st
import time

# FIRST: Set page config before ANY other Streamlit command
st.set_page_config(page_title="Indian Spiritual RAG")

# Initialize ALL session state variables
if 'initialized' not in st.session_state:
    st.session_state.initialized = False
if 'model' not in st.session_state:
    st.session_state.model = None
if 'tokenizer' not in st.session_state:
    st.session_state.tokenizer = None
if 'last_query' not in st.session_state:
    st.session_state.last_query = ""
if 'submit_clicked' not in st.session_state:
    st.session_state.submit_clicked = False
if 'init_time' not in st.session_state:
    st.session_state.init_time = None
if 'query_answered' not in st.session_state:
    st.session_state.query_answered = False  # Tracks if the query has been answered

# THEN: Import your modules
from rag_engine import process_query, load_model
from utils import setup_all_auth

# Create a placeholder for our initialization message
init_message = st.empty()

# βœ… Custom CSS to handle dynamic text box color change
st.markdown("""
<style>
/* Styling for the main title */
.main-title {
    font-size: 2.5rem;
    color: #FF5722;
    text-align: center;
    margin-bottom: 1rem;
}

/* βœ… Green by default */
input[type="text"] {
    border: 2px solid #4CAF50 !important;
    border-radius: 8px !important;
    transition: border 0.3s ease-in-out;
}

/* πŸ”΄ Change to red while typing */
input[type="text"]:focus {
    border: 2px solid #FF5722 !important;
}

/* βœ… Change back to green AFTER submission */
.answered input[type="text"] {
    border: 2px solid #4CAF50 !important;
}

/* βœ… FULLY GREEN BUTTON */
.stButton>button {
    background-color: #4CAF50 !important;
    color: #E8F5E9 !important;
    border: 2px solid #4CAF50 !important;
    border-radius: 8px !important;
}
</style>
<div class="main-title">Indian Spiritual Texts Q&A</div>
""", unsafe_allow_html=True)

# Handle initialization and success message timing
if not st.session_state.initialized:
    init_message.info("Hang in there! We are setting the system up for you. 😊")

    try:
        # Setup authentication
        setup_all_auth()

        # Load the model
        load_model()

        # Mark as initialized and record time
        st.session_state.initialized = True
        st.session_state.init_time = time.time()

        # Show success message
        init_message.success("System initialized successfully!")

        # Force rerun to start the timer for removing the message
        time.sleep(0.1)  # Small delay to ensure message appears
        st.rerun()

    except Exception as e:
        init_message.error(f"Error initializing: {str(e)}")

# Check if we need to hide the success message (after initialization)
elif st.session_state.init_time is not None:
    elapsed_time = time.time() - st.session_state.init_time
    if elapsed_time >= 2.0:
        init_message.empty()
        st.session_state.init_time = None  # Reset timer after clearing

# Function to handle form submission
def handle_form_submit():
    if st.session_state.query_input:
        st.session_state.last_query = st.session_state.query_input
        st.session_state.submit_clicked = True
        st.session_state.query_answered = False  # Mark as not yet answered
        st.session_state.query_input = ""  # Clear input box after submission

# βœ… Conditionally apply CSS class based on query answered status
input_css_class = "answered" if st.session_state.query_answered else ""

# βœ… Wrap the text input inside a div to allow dynamic styling
st.markdown(f'<div class="{input_css_class}">', unsafe_allow_html=True)

# βœ… Create a form for handling user input
with st.form(key="query_form"):
    # Input field with dynamic border behavior
    query = st.text_input(
        "Ask your question:",
        key="query_input",
        value="",
        placeholder="Type here..."
    )

    # Submit button
    submit_button = st.form_submit_button("Get Answer", on_click=handle_form_submit)

st.markdown("</div>", unsafe_allow_html=True)  # βœ… Close the div for styling

# βœ… Display the last question after submission
if st.session_state.submit_clicked and st.session_state.last_query:
    st.markdown("### Current Question:")
    st.info(st.session_state.last_query)

# Sliders for customization
col1, col2 = st.columns(2)
with col1:
    top_k = st.slider("Number of sources:", 3, 10, 5)
with col2:
    word_limit = st.slider("Word limit:", 50, 500, 200)

# βœ… Process the query if submitted
if st.session_state.submit_clicked and st.session_state.last_query:
    st.session_state.submit_clicked = False  # Reset flag

    with st.spinner("Processing your question..."):
        try:
            result = process_query(st.session_state.last_query, top_k=top_k, word_limit=word_limit)

            st.subheader("Answer:")
            st.write(result["answer_with_rag"])

            st.subheader("Sources:")
            for citation in result["citations"].split("\n"):
                st.write(citation)

            st.session_state.query_answered = True  # βœ… Mark query as answered
            st.rerun()  # βœ… Refresh UI so that text box turns green again

        except Exception as e:
            st.error(f"Error processing query: {str(e)}")

# Add helpful information
st.markdown("---")
st.markdown("""
### About this app
This application uses a Retrieval-Augmented Generation (RAG) system to answer questions about Indian spiritual texts.
It searches through a database of texts to find relevant passages and generates answers based on those passages.
""")