anveshak / rag_engine.py
ankanghosh's picture
Update rag_engine.py
f637309 verified
raw
history blame
14.3 kB
import os
import json
import numpy as np
import faiss
import torch
import torch.nn as nn
from google.cloud import storage
from transformers import AutoTokenizer, AutoModel
import openai
import textwrap
import unicodedata
import streamlit as st
from utils import setup_gcp_auth, setup_openai_auth
# Force model to CPU for stability
os.environ["CUDA_VISIBLE_DEVICES"] = ""
# Create a function to initialize session state
def initialize_session_state():
if 'model_initialized' not in st.session_state:
st.session_state.model_initialized = False
st.session_state.model = None
st.session_state.tokenizer = None
st.session_state.device = torch.device("cpu")
print("Initialized session state variables")
# Call the initialization function right away
initialize_session_state()
# Load GCP authentication from utility function
def setup_gcp_client():
try:
credentials = setup_gcp_auth()
storage_client = storage.Client(credentials=credentials)
bucket_name = "indian_spiritual-1"
bucket = storage_client.bucket(bucket_name)
print("βœ… GCP client initialized successfully")
return bucket
except Exception as e:
print(f"❌ GCP client initialization error: {str(e)}")
st.error(f"GCP client initialization error: {str(e)}")
return None
# Setup OpenAI authentication
def setup_openai_client():
try:
setup_openai_auth()
print("βœ… OpenAI client initialized successfully")
return True
except Exception as e:
print(f"❌ OpenAI client initialization error: {str(e)}")
st.error(f"OpenAI client initialization error: {str(e)}")
return False
# GCS Paths
metadata_file_gcs = "metadata/metadata.jsonl"
embeddings_file_gcs = "processed/embeddings/all_embeddings.npy"
faiss_index_file_gcs = "processed/indices/faiss_index.faiss"
text_chunks_file_gcs = "processed/chunks/text_chunks.txt"
# Local Paths
local_embeddings_file = "all_embeddings.npy"
local_faiss_index_file = "faiss_index.faiss"
local_text_chunks_file = "text_chunks.txt"
local_metadata_file = "metadata.jsonl"
def load_model():
try:
# Initialize model if it doesn't exist
if 'model' not in st.session_state or st.session_state.model is None:
# Force model to CPU - more stable than GPU for this use case
os.environ["CUDA_VISIBLE_DEVICES"] = ""
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained("intfloat/e5-small-v2")
print("Loading model...")
model = AutoModel.from_pretrained(
"intfloat/e5-small-v2",
torch_dtype=torch.float16 # Use half precision
)
# Move model to CPU explicitly
model = model.to('cpu')
model.eval()
torch.set_grad_enabled(False)
# Store in session state
st.session_state.tokenizer = tokenizer
st.session_state.model = model
print("βœ… Model loaded successfully")
return st.session_state.tokenizer, st.session_state.model
except Exception as e:
print(f"❌ Error loading model: {str(e)}")
# Return None values instead of raising to avoid crashing
return None, None
def download_file_from_gcs(bucket, gcs_path, local_path):
"""Download a file from GCS to local storage."""
try:
blob = bucket.blob(gcs_path)
blob.download_to_filename(local_path)
print(f"βœ… Downloaded {gcs_path} β†’ {local_path}")
return True
except Exception as e:
print(f"❌ Error downloading {gcs_path}: {str(e)}")
st.error(f"Error downloading {gcs_path}: {str(e)}")
return False
def load_data_files():
# Initialize GCP and OpenAI clients
bucket = setup_gcp_client()
openai_initialized = setup_openai_client()
if not bucket or not openai_initialized:
st.error("Failed to initialize required services")
return None, None, None
# Download necessary files - remove the spinner from here
success = True
success &= download_file_from_gcs(bucket, faiss_index_file_gcs, local_faiss_index_file)
success &= download_file_from_gcs(bucket, text_chunks_file_gcs, local_text_chunks_file)
success &= download_file_from_gcs(bucket, metadata_file_gcs, local_metadata_file)
if not success:
st.error("Failed to download required files")
return None, None, None
# Load FAISS index
try:
faiss_index = faiss.read_index(local_faiss_index_file)
except Exception as e:
print(f"❌ Error loading FAISS index: {str(e)}")
st.error(f"Error loading FAISS index: {str(e)}")
return None, None, None
# Load text chunks
try:
text_chunks = {} # {ID -> (Title, Author, Text)}
with open(local_text_chunks_file, "r", encoding="utf-8") as f:
for line in f:
parts = line.strip().split("\t")
if len(parts) == 4:
text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
except Exception as e:
print(f"❌ Error loading text chunks: {str(e)}")
st.error(f"Error loading text chunks: {str(e)}")
return None, None, None
# Load metadata.jsonl for publisher information
try:
metadata_dict = {}
with open(local_metadata_file, "r", encoding="utf-8") as f:
for line in f:
item = json.loads(line)
metadata_dict[item["Title"]] = item # Store for easy lookup
except Exception as e:
print(f"❌ Error loading metadata: {str(e)}")
st.error(f"Error loading metadata: {str(e)}")
return None, None, None
print(f"βœ… FAISS index and text chunks loaded. {len(text_chunks)} passages available.")
return faiss_index, text_chunks, metadata_dict
def average_pool(last_hidden_states, attention_mask):
"""Average pooling for sentence embeddings."""
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
query_embedding_cache = {}
def get_embedding(text):
if text in query_embedding_cache:
return query_embedding_cache[text]
try:
# Ensure model initialization
if 'model' not in st.session_state or st.session_state.model is None:
tokenizer, model = load_model()
if model is None:
return np.zeros((1, 384), dtype=np.float32) # Fallback for e5-small-v2
else:
tokenizer, model = st.session_state.tokenizer, st.session_state.model
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
# Explicitly specify truncation parameters to avoid warnings
inputs = tokenizer(
input_text,
padding=True,
truncation=True,
return_tensors="pt",
max_length=512,
return_attention_mask=True
)
# Move to CPU explicitly before processing
inputs = {k: v.to('cpu') for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
# Ensure we detach and move to numpy on CPU
embeddings = embeddings.detach().cpu().numpy()
# Explicitly clean up
del outputs
torch.cuda.empty_cache() if torch.cuda.is_available() else None
query_embedding_cache[text] = embeddings
return embeddings
except Exception as e:
print(f"❌ Embedding error: {str(e)}")
st.error(f"Embedding error: {str(e)}")
return np.zeros((1, 384), dtype=np.float32) # Changed from 1024 to 384 for e5-small-v2
def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
"""Retrieve top-k most relevant passages using FAISS with metadata."""
try:
print(f"\nπŸ” Retrieving passages for query: {query}")
query_embedding = get_embedding(query)
distances, indices = faiss_index.search(query_embedding, top_k * 2)
print(f"Found {len(distances[0])} potential matches")
retrieved_passages = []
retrieved_sources = []
cited_titles = set()
for dist, idx in zip(distances[0], indices[0]):
print(f"Distance: {dist:.4f}, Index: {idx}")
if idx in text_chunks and dist >= similarity_threshold:
title_with_txt, author, text = text_chunks[idx]
# Normalize title and remove .txt
clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
clean_title = unicodedata.normalize("NFC", clean_title)
# Ensure unique citations
if clean_title in cited_titles:
continue
metadata_entry = metadata_dict.get(clean_title, {})
author = metadata_entry.get("Author", "Unknown")
publisher = metadata_entry.get("Publisher", "Unknown")
cited_titles.add(clean_title)
retrieved_passages.append(text)
retrieved_sources.append((clean_title, author, publisher))
if len(retrieved_passages) == top_k:
break
print(f"Retrieved {len(retrieved_passages)} passages")
return retrieved_passages, retrieved_sources
except Exception as e:
print(f"❌ Error in retrieve_passages: {str(e)}")
st.error(f"Error in retrieve_passages: {str(e)}")
return [], []
def answer_with_llm(query, context=None, word_limit=100):
"""
Generate an answer using OpenAI GPT model with formatted citations.
"""
try:
if context:
formatted_contexts = []
total_chars = 0
max_context_chars = 4000
for (title, author, publisher), text in context:
remaining_space = max(0, max_context_chars - total_chars)
excerpt_len = min(150, remaining_space)
if excerpt_len > 50:
excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text
formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}"
formatted_contexts.append(formatted_context)
total_chars += len(formatted_context)
if total_chars >= max_context_chars:
break
formatted_context = "\n".join(formatted_contexts)
else:
formatted_context = "No relevant information available."
# System message
system_message = (
"You are an AI specialized in Indian spiritual texts. "
"Answer based on context, summarizing ideas rather than quoting verbatim. "
"Ensure proper citation and do not include direct excerpts."
)
user_message = f"""
Context:
{formatted_context}
Question:
{query}
"""
response = openai.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
],
max_tokens=200,
temperature=0.7
)
answer = response.choices[0].message.content.strip()
# Enforce word limit
words = answer.split()
if len(words) > word_limit:
answer = " ".join(words[:word_limit])
if not answer.endswith((".", "!", "?")):
answer += "."
return answer
except Exception as e:
print(f"❌ LLM API error: {str(e)}")
st.error(f"LLM API error: {str(e)}")
return "I apologize, but I'm unable to answer at the moment."
def format_citations(sources):
"""Format citations to display each one on a new line with a full stop if needed."""
formatted_citations = []
for title, author, publisher in sources:
# Check if the publisher already ends with a period, question mark, or exclamation mark
if publisher.endswith(('.', '!', '?')):
formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}")
else:
formatted_citations.append(f"πŸ“š {title} by {author}, Published by {publisher}.")
return "\n".join(formatted_citations)
def process_query(query, top_k=5, word_limit=100):
"""Process a query through the RAG pipeline with proper formatting."""
print(f"\nπŸ” Processing query: {query}")
# Load data files if not already loaded
if not hasattr(st.session_state, 'data_loaded') or not st.session_state.data_loaded:
st.session_state.faiss_index, st.session_state.text_chunks, st.session_state.metadata_dict = load_data_files()
st.session_state.data_loaded = True
# Check if data loaded successfully
if not st.session_state.faiss_index or not st.session_state.text_chunks or not st.session_state.metadata_dict:
return {"query": query, "answer_with_rag": "⚠️ System error: Data files not loaded properly.", "citations": "No citations available."}
retrieved_context, retrieved_sources = retrieve_passages(
query,
st.session_state.faiss_index,
st.session_state.text_chunks,
st.session_state.metadata_dict,
top_k=top_k
)
sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."
if retrieved_context:
context_with_sources = list(zip(retrieved_sources, retrieved_context))
llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
else:
llm_answer_with_rag = "⚠️ No relevant context found."
return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}