Spaces:
Sleeping
Sleeping
Update rag_engine.py
Browse files- rag_engine.py +85 -52
rag_engine.py
CHANGED
@@ -12,13 +12,15 @@ import unicodedata
|
|
12 |
import streamlit as st
|
13 |
from utils import setup_gcp_auth, setup_openai_auth
|
14 |
|
15 |
-
# Initialize session state for model and tokenizer
|
16 |
if 'model' not in st.session_state:
|
17 |
st.session_state.model = None
|
|
|
18 |
if 'tokenizer' not in st.session_state:
|
19 |
st.session_state.tokenizer = None
|
|
|
20 |
if 'device' not in st.session_state:
|
21 |
-
st.session_state.device = torch.device("
|
22 |
print(f"Using device: {st.session_state.device}")
|
23 |
|
24 |
# Load GCP authentication from utility function
|
@@ -58,58 +60,86 @@ def load_model():
|
|
58 |
# Force model to CPU - more stable than GPU for this use case
|
59 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
|
80 |
return st.session_state.tokenizer, st.session_state.model
|
81 |
except Exception as e:
|
82 |
print(f"β Error loading model: {str(e)}")
|
|
|
83 |
raise
|
84 |
|
85 |
def download_file_from_gcs(gcs_path, local_path):
|
86 |
"""Download a file from GCS to local storage."""
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
#
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
# Load
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
print(f"β
FAISS index and text chunks loaded. {len(text_chunks)} passages available.")
|
115 |
|
@@ -155,7 +185,8 @@ def get_embedding(text):
|
|
155 |
return embeddings
|
156 |
except Exception as e:
|
157 |
print(f"β Embedding error: {str(e)}")
|
158 |
-
|
|
|
159 |
|
160 |
def retrieve_passages(query, top_k=5, similarity_threshold=0.5):
|
161 |
"""Retrieve top-k most relevant passages using FAISS with metadata."""
|
@@ -198,6 +229,7 @@ def retrieve_passages(query, top_k=5, similarity_threshold=0.5):
|
|
198 |
return retrieved_passages, retrieved_sources
|
199 |
except Exception as e:
|
200 |
print(f"β Error in retrieve_passages: {str(e)}")
|
|
|
201 |
return [], []
|
202 |
|
203 |
def answer_with_llm(query, context=None, word_limit=100):
|
@@ -265,8 +297,13 @@ def answer_with_llm(query, context=None, word_limit=100):
|
|
265 |
|
266 |
except Exception as e:
|
267 |
print(f"β LLM API error: {str(e)}")
|
|
|
268 |
return "I apologize, but I'm unable to answer at the moment."
|
269 |
|
|
|
|
|
|
|
|
|
270 |
def process_query(query, top_k=5, word_limit=100):
|
271 |
"""Process a query through the RAG pipeline with proper formatting."""
|
272 |
print(f"\nπ Processing query: {query}")
|
@@ -280,8 +317,4 @@ def process_query(query, top_k=5, word_limit=100):
|
|
280 |
else:
|
281 |
llm_answer_with_rag = "β οΈ No relevant context found."
|
282 |
|
283 |
-
return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}
|
284 |
-
|
285 |
-
def format_citations(sources):
|
286 |
-
"""Format citations to display each one on a new line."""
|
287 |
-
return "\n".join([f"π {title} by {author}, Published by {publisher}" for title, author, publisher in sources])
|
|
|
12 |
import streamlit as st
|
13 |
from utils import setup_gcp_auth, setup_openai_auth
|
14 |
|
15 |
+
# Initialize session state for model and tokenizer FIRST - before any usage
|
16 |
if 'model' not in st.session_state:
|
17 |
st.session_state.model = None
|
18 |
+
print("Initialized st.session_state.model to None")
|
19 |
if 'tokenizer' not in st.session_state:
|
20 |
st.session_state.tokenizer = None
|
21 |
+
print("Initialized st.session_state.tokenizer to None")
|
22 |
if 'device' not in st.session_state:
|
23 |
+
st.session_state.device = torch.device("cpu") # Force CPU for stability
|
24 |
print(f"Using device: {st.session_state.device}")
|
25 |
|
26 |
# Load GCP authentication from utility function
|
|
|
60 |
# Force model to CPU - more stable than GPU for this use case
|
61 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
62 |
|
63 |
+
with st.spinner("Loading tokenizer and model... This may take a minute."):
|
64 |
+
print("Loading tokenizer...")
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained("intfloat/e5-small-v2")
|
66 |
+
|
67 |
+
print("Loading model...")
|
68 |
+
model = AutoModel.from_pretrained(
|
69 |
+
"intfloat/e5-small-v2",
|
70 |
+
torch_dtype=torch.float16, # Use half precision
|
71 |
+
low_cpu_mem_usage=True,
|
72 |
+
# Remove device_map - it requires accelerate and causes issues
|
73 |
+
)
|
74 |
+
|
75 |
+
model.eval()
|
76 |
+
torch.set_grad_enabled(False)
|
77 |
+
|
78 |
+
st.session_state.tokenizer = tokenizer
|
79 |
+
st.session_state.model = model
|
80 |
+
|
81 |
+
print("β
Model loaded successfully")
|
82 |
|
83 |
return st.session_state.tokenizer, st.session_state.model
|
84 |
except Exception as e:
|
85 |
print(f"β Error loading model: {str(e)}")
|
86 |
+
st.error(f"Error loading model: {str(e)}")
|
87 |
raise
|
88 |
|
89 |
def download_file_from_gcs(gcs_path, local_path):
|
90 |
"""Download a file from GCS to local storage."""
|
91 |
+
try:
|
92 |
+
blob = bucket.blob(gcs_path)
|
93 |
+
blob.download_to_filename(local_path)
|
94 |
+
print(f"β
Downloaded {gcs_path} β {local_path}")
|
95 |
+
except Exception as e:
|
96 |
+
print(f"β Error downloading {gcs_path}: {str(e)}")
|
97 |
+
st.error(f"Error downloading {gcs_path}: {str(e)}")
|
98 |
+
raise
|
99 |
+
|
100 |
+
# Add error handling around file downloads
|
101 |
+
try:
|
102 |
+
# Download necessary files with a spinner to show progress
|
103 |
+
with st.spinner("Downloading necessary files..."):
|
104 |
+
download_file_from_gcs(faiss_index_file_gcs, local_faiss_index_file)
|
105 |
+
download_file_from_gcs(text_chunks_file_gcs, local_text_chunks_file)
|
106 |
+
download_file_from_gcs(metadata_file_gcs, local_metadata_file)
|
107 |
+
except Exception as e:
|
108 |
+
st.error(f"Error setting up data files: {str(e)}")
|
109 |
+
raise
|
110 |
+
|
111 |
+
# Load FAISS index with error handling
|
112 |
+
try:
|
113 |
+
faiss_index = faiss.read_index(local_faiss_index_file)
|
114 |
+
except Exception as e:
|
115 |
+
print(f"β Error loading FAISS index: {str(e)}")
|
116 |
+
st.error(f"Error loading FAISS index: {str(e)}")
|
117 |
+
raise
|
118 |
+
|
119 |
+
# Load text chunks with error handling
|
120 |
+
try:
|
121 |
+
text_chunks = {} # {ID -> (Title, Author, Text)}
|
122 |
+
with open(local_text_chunks_file, "r", encoding="utf-8") as f:
|
123 |
+
for line in f:
|
124 |
+
parts = line.strip().split("\t")
|
125 |
+
if len(parts) == 4:
|
126 |
+
text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
|
127 |
+
except Exception as e:
|
128 |
+
print(f"β Error loading text chunks: {str(e)}")
|
129 |
+
st.error(f"Error loading text chunks: {str(e)}")
|
130 |
+
raise
|
131 |
+
|
132 |
+
# Load metadata.jsonl for publisher information with error handling
|
133 |
+
try:
|
134 |
+
metadata_dict = {}
|
135 |
+
with open(local_metadata_file, "r", encoding="utf-8") as f:
|
136 |
+
for line in f:
|
137 |
+
item = json.loads(line)
|
138 |
+
metadata_dict[item["Title"]] = item # Store for easy lookup
|
139 |
+
except Exception as e:
|
140 |
+
print(f"β Error loading metadata: {str(e)}")
|
141 |
+
st.error(f"Error loading metadata: {str(e)}")
|
142 |
+
raise
|
143 |
|
144 |
print(f"β
FAISS index and text chunks loaded. {len(text_chunks)} passages available.")
|
145 |
|
|
|
185 |
return embeddings
|
186 |
except Exception as e:
|
187 |
print(f"β Embedding error: {str(e)}")
|
188 |
+
st.error(f"Embedding error: {str(e)}")
|
189 |
+
return np.zeros((1, 384), dtype=np.float32) # Changed from 1024 to 384 for e5-small-v2
|
190 |
|
191 |
def retrieve_passages(query, top_k=5, similarity_threshold=0.5):
|
192 |
"""Retrieve top-k most relevant passages using FAISS with metadata."""
|
|
|
229 |
return retrieved_passages, retrieved_sources
|
230 |
except Exception as e:
|
231 |
print(f"β Error in retrieve_passages: {str(e)}")
|
232 |
+
st.error(f"Error in retrieve_passages: {str(e)}")
|
233 |
return [], []
|
234 |
|
235 |
def answer_with_llm(query, context=None, word_limit=100):
|
|
|
297 |
|
298 |
except Exception as e:
|
299 |
print(f"β LLM API error: {str(e)}")
|
300 |
+
st.error(f"LLM API error: {str(e)}")
|
301 |
return "I apologize, but I'm unable to answer at the moment."
|
302 |
|
303 |
+
def format_citations(sources):
|
304 |
+
"""Format citations to display each one on a new line."""
|
305 |
+
return "\n".join([f"π {title} by {author}, Published by {publisher}" for title, author, publisher in sources])
|
306 |
+
|
307 |
def process_query(query, top_k=5, word_limit=100):
|
308 |
"""Process a query through the RAG pipeline with proper formatting."""
|
309 |
print(f"\nπ Processing query: {query}")
|
|
|
317 |
else:
|
318 |
llm_answer_with_rag = "β οΈ No relevant context found."
|
319 |
|
320 |
+
return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}
|
|
|
|
|
|
|
|