Spaces:
Running
Running
Upload application files.
Browse files- rag_engine.py +287 -0
- requirements.txt +6 -0
- utils.py +95 -0
rag_engine.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import faiss
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from google.cloud import storage
|
8 |
+
from transformers import AutoTokenizer, AutoModel
|
9 |
+
import openai
|
10 |
+
import textwrap
|
11 |
+
import unicodedata
|
12 |
+
import streamlit as st
|
13 |
+
from utils import setup_gcp_auth, setup_openai_auth
|
14 |
+
|
15 |
+
# Initialize session state for model and tokenizer
|
16 |
+
if 'model' not in st.session_state:
|
17 |
+
st.session_state.model = None
|
18 |
+
if 'tokenizer' not in st.session_state:
|
19 |
+
st.session_state.tokenizer = None
|
20 |
+
if 'device' not in st.session_state:
|
21 |
+
st.session_state.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
+
print(f"Using device: {st.session_state.device}")
|
23 |
+
|
24 |
+
# Load GCP authentication from utility function
|
25 |
+
try:
|
26 |
+
credentials = setup_gcp_auth()
|
27 |
+
storage_client = storage.Client(credentials=credentials)
|
28 |
+
bucket_name = "indian_spiritual-1"
|
29 |
+
bucket = storage_client.bucket(bucket_name)
|
30 |
+
print("β
GCP client initialized successfully")
|
31 |
+
except Exception as e:
|
32 |
+
print(f"β GCP client initialization error: {str(e)}")
|
33 |
+
raise
|
34 |
+
|
35 |
+
# Setup OpenAI authentication
|
36 |
+
try:
|
37 |
+
setup_openai_auth()
|
38 |
+
print("β
OpenAI client initialized successfully")
|
39 |
+
except Exception as e:
|
40 |
+
print(f"β OpenAI client initialization error: {str(e)}")
|
41 |
+
raise
|
42 |
+
|
43 |
+
# GCS Paths
|
44 |
+
metadata_file_gcs = "metadata/metadata.jsonl"
|
45 |
+
embeddings_file_gcs = "processed/embeddings/all_embeddings.npy"
|
46 |
+
faiss_index_file_gcs = "processed/indices/faiss_index.faiss"
|
47 |
+
text_chunks_file_gcs = "processed/chunks/text_chunks.txt"
|
48 |
+
|
49 |
+
# Local Paths
|
50 |
+
local_embeddings_file = "all_embeddings.npy"
|
51 |
+
local_faiss_index_file = "faiss_index.faiss"
|
52 |
+
local_text_chunks_file = "text_chunks.txt"
|
53 |
+
local_metadata_file = "metadata.jsonl"
|
54 |
+
|
55 |
+
def load_model():
|
56 |
+
try:
|
57 |
+
if st.session_state.model is None:
|
58 |
+
# Force model to CPU - more stable than GPU for this use case
|
59 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
60 |
+
|
61 |
+
print("Loading tokenizer...")
|
62 |
+
tokenizer = AutoTokenizer.from_pretrained("intfloat/e5-small-v2")
|
63 |
+
|
64 |
+
print("Loading model...")
|
65 |
+
model = AutoModel.from_pretrained(
|
66 |
+
"intfloat/e5-small-v2",
|
67 |
+
torch_dtype=torch.float16, # Use half precision
|
68 |
+
low_cpu_mem_usage=True,
|
69 |
+
device_map="auto" # Let transformers decide
|
70 |
+
)
|
71 |
+
|
72 |
+
model.eval()
|
73 |
+
torch.set_grad_enabled(False)
|
74 |
+
|
75 |
+
st.session_state.tokenizer = tokenizer
|
76 |
+
st.session_state.model = model
|
77 |
+
|
78 |
+
print("β
Model loaded successfully")
|
79 |
+
|
80 |
+
return st.session_state.tokenizer, st.session_state.model
|
81 |
+
except Exception as e:
|
82 |
+
print(f"β Error loading model: {str(e)}")
|
83 |
+
raise
|
84 |
+
|
85 |
+
def download_file_from_gcs(gcs_path, local_path):
|
86 |
+
"""Download a file from GCS to local storage."""
|
87 |
+
blob = bucket.blob(gcs_path)
|
88 |
+
blob.download_to_filename(local_path)
|
89 |
+
print(f"β
Downloaded {gcs_path} β {local_path}")
|
90 |
+
|
91 |
+
# Download necessary files
|
92 |
+
download_file_from_gcs(faiss_index_file_gcs, local_faiss_index_file)
|
93 |
+
download_file_from_gcs(text_chunks_file_gcs, local_text_chunks_file)
|
94 |
+
download_file_from_gcs(metadata_file_gcs, local_metadata_file)
|
95 |
+
|
96 |
+
# Load FAISS index
|
97 |
+
faiss_index = faiss.read_index(local_faiss_index_file)
|
98 |
+
|
99 |
+
# Load text chunks
|
100 |
+
text_chunks = {} # {ID -> (Title, Author, Text)}
|
101 |
+
with open(local_text_chunks_file, "r", encoding="utf-8") as f:
|
102 |
+
for line in f:
|
103 |
+
parts = line.strip().split("\t")
|
104 |
+
if len(parts) == 4:
|
105 |
+
text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
|
106 |
+
|
107 |
+
# Load metadata.jsonl for publisher information
|
108 |
+
metadata_dict = {}
|
109 |
+
with open(local_metadata_file, "r", encoding="utf-8") as f:
|
110 |
+
for line in f:
|
111 |
+
item = json.loads(line)
|
112 |
+
metadata_dict[item["Title"]] = item # Store for easy lookup
|
113 |
+
|
114 |
+
print(f"β
FAISS index and text chunks loaded. {len(text_chunks)} passages available.")
|
115 |
+
|
116 |
+
def average_pool(last_hidden_states, attention_mask):
|
117 |
+
"""Average pooling for sentence embeddings."""
|
118 |
+
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
119 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
120 |
+
|
121 |
+
query_embedding_cache = {}
|
122 |
+
|
123 |
+
def get_embedding(text):
|
124 |
+
if text in query_embedding_cache:
|
125 |
+
return query_embedding_cache[text]
|
126 |
+
|
127 |
+
try:
|
128 |
+
tokenizer, model = load_model()
|
129 |
+
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
|
130 |
+
|
131 |
+
inputs = tokenizer(
|
132 |
+
input_text,
|
133 |
+
padding=True,
|
134 |
+
truncation=True,
|
135 |
+
return_tensors="pt",
|
136 |
+
max_length=512,
|
137 |
+
return_attention_mask=True
|
138 |
+
)
|
139 |
+
|
140 |
+
# Move to CPU explicitly before processing
|
141 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
142 |
+
|
143 |
+
with torch.no_grad():
|
144 |
+
outputs = model(**inputs)
|
145 |
+
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
|
146 |
+
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
|
147 |
+
# Ensure we detach and move to numpy on CPU
|
148 |
+
embeddings = embeddings.detach().cpu().numpy()
|
149 |
+
|
150 |
+
# Explicitly clean up
|
151 |
+
del outputs
|
152 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
153 |
+
|
154 |
+
query_embedding_cache[text] = embeddings
|
155 |
+
return embeddings
|
156 |
+
except Exception as e:
|
157 |
+
print(f"β Embedding error: {str(e)}")
|
158 |
+
return np.zeros((1, 1024), dtype=np.float32)
|
159 |
+
|
160 |
+
def retrieve_passages(query, top_k=5, similarity_threshold=0.5):
|
161 |
+
"""Retrieve top-k most relevant passages using FAISS with metadata."""
|
162 |
+
try:
|
163 |
+
print(f"\nπ Retrieving passages for query: {query}")
|
164 |
+
query_embedding = get_embedding(query)
|
165 |
+
distances, indices = faiss_index.search(query_embedding, top_k * 2)
|
166 |
+
|
167 |
+
print(f"Found {len(distances[0])} potential matches")
|
168 |
+
retrieved_passages = []
|
169 |
+
retrieved_sources = []
|
170 |
+
cited_titles = set()
|
171 |
+
|
172 |
+
for dist, idx in zip(distances[0], indices[0]):
|
173 |
+
print(f"Distance: {dist:.4f}, Index: {idx}")
|
174 |
+
if idx in text_chunks and dist >= similarity_threshold:
|
175 |
+
title_with_txt, author, text = text_chunks[idx]
|
176 |
+
|
177 |
+
# Normalize title and remove .txt
|
178 |
+
clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
|
179 |
+
clean_title = unicodedata.normalize("NFC", clean_title)
|
180 |
+
|
181 |
+
# Ensure unique citations
|
182 |
+
if clean_title in cited_titles:
|
183 |
+
continue
|
184 |
+
|
185 |
+
metadata_entry = metadata_dict.get(clean_title, {})
|
186 |
+
author = metadata_entry.get("Author", "Unknown")
|
187 |
+
publisher = metadata_entry.get("Publisher", "Unknown")
|
188 |
+
|
189 |
+
cited_titles.add(clean_title)
|
190 |
+
|
191 |
+
retrieved_passages.append(text)
|
192 |
+
retrieved_sources.append((clean_title, author, publisher))
|
193 |
+
|
194 |
+
if len(retrieved_passages) == top_k:
|
195 |
+
break
|
196 |
+
|
197 |
+
print(f"Retrieved {len(retrieved_passages)} passages")
|
198 |
+
return retrieved_passages, retrieved_sources
|
199 |
+
except Exception as e:
|
200 |
+
print(f"β Error in retrieve_passages: {str(e)}")
|
201 |
+
return [], []
|
202 |
+
|
203 |
+
def answer_with_llm(query, context=None, word_limit=100):
|
204 |
+
"""
|
205 |
+
Generate an answer using OpenAI GPT model with formatted citations.
|
206 |
+
"""
|
207 |
+
try:
|
208 |
+
if context:
|
209 |
+
formatted_contexts = []
|
210 |
+
total_chars = 0
|
211 |
+
max_context_chars = 4000
|
212 |
+
|
213 |
+
for (title, author, publisher), text in context:
|
214 |
+
remaining_space = max(0, max_context_chars - total_chars)
|
215 |
+
excerpt_len = min(150, remaining_space)
|
216 |
+
|
217 |
+
if excerpt_len > 50:
|
218 |
+
excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text
|
219 |
+
formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}"
|
220 |
+
formatted_contexts.append(formatted_context)
|
221 |
+
total_chars += len(formatted_context)
|
222 |
+
|
223 |
+
if total_chars >= max_context_chars:
|
224 |
+
break
|
225 |
+
|
226 |
+
formatted_context = "\n".join(formatted_contexts)
|
227 |
+
else:
|
228 |
+
formatted_context = "No relevant information available."
|
229 |
+
|
230 |
+
# System message
|
231 |
+
system_message = (
|
232 |
+
"You are an AI specialized in Indian spiritual texts. "
|
233 |
+
"Answer based on context, summarizing ideas rather than quoting verbatim. "
|
234 |
+
"Ensure proper citation and do not include direct excerpts."
|
235 |
+
)
|
236 |
+
|
237 |
+
user_message = f"""
|
238 |
+
Context:
|
239 |
+
{formatted_context}
|
240 |
+
|
241 |
+
Question:
|
242 |
+
{query}
|
243 |
+
"""
|
244 |
+
|
245 |
+
response = openai.chat.completions.create(
|
246 |
+
model="gpt-3.5-turbo",
|
247 |
+
messages=[
|
248 |
+
{"role": "system", "content": system_message},
|
249 |
+
{"role": "user", "content": user_message}
|
250 |
+
],
|
251 |
+
max_tokens=200,
|
252 |
+
temperature=0.7
|
253 |
+
)
|
254 |
+
|
255 |
+
answer = response.choices[0].message.content.strip()
|
256 |
+
|
257 |
+
# Enforce word limit
|
258 |
+
words = answer.split()
|
259 |
+
if len(words) > word_limit:
|
260 |
+
answer = " ".join(words[:word_limit])
|
261 |
+
if not answer.endswith((".", "!", "?")):
|
262 |
+
answer += "."
|
263 |
+
|
264 |
+
return answer
|
265 |
+
|
266 |
+
except Exception as e:
|
267 |
+
print(f"β LLM API error: {str(e)}")
|
268 |
+
return "I apologize, but I'm unable to answer at the moment."
|
269 |
+
|
270 |
+
def process_query(query, top_k=5, word_limit=100):
|
271 |
+
"""Process a query through the RAG pipeline with proper formatting."""
|
272 |
+
print(f"\nπ Processing query: {query}")
|
273 |
+
|
274 |
+
retrieved_context, retrieved_sources = retrieve_passages(query, top_k=top_k)
|
275 |
+
sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."
|
276 |
+
|
277 |
+
if retrieved_context:
|
278 |
+
context_with_sources = list(zip(retrieved_sources, retrieved_context))
|
279 |
+
llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
|
280 |
+
else:
|
281 |
+
llm_answer_with_rag = "β οΈ No relevant context found."
|
282 |
+
|
283 |
+
return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}
|
284 |
+
|
285 |
+
def format_citations(sources):
|
286 |
+
"""Format citations to display each one on a new line."""
|
287 |
+
return "\n".join([f"π {title} by {author}, Published by {publisher}" for title, author, publisher in sources])
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
faiss-cpu==1.10.0
|
2 |
+
transformers==4.38.2
|
3 |
+
openai==1.14.1
|
4 |
+
google-cloud-storage==2.14.0
|
5 |
+
google-auth>=2.28.1
|
6 |
+
streamlit>=1.32.0
|
utils.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from google.oauth2 import service_account
|
4 |
+
import streamlit as st
|
5 |
+
import openai
|
6 |
+
|
7 |
+
def setup_gcp_auth():
|
8 |
+
"""Setup GCP authentication from HF Spaces, environment variables, or Streamlit secrets."""
|
9 |
+
try:
|
10 |
+
# Option 1: HF Spaces environment variable
|
11 |
+
if "GCP_CREDENTIALS" in os.environ:
|
12 |
+
gcp_credentials = json.loads(os.getenv("GCP_CREDENTIALS"))
|
13 |
+
print("β
Using GCP credentials from HF Spaces environment variable")
|
14 |
+
credentials = service_account.Credentials.from_service_account_info(gcp_credentials)
|
15 |
+
return credentials
|
16 |
+
|
17 |
+
# Option 2: Local environment variable pointing to file
|
18 |
+
elif "GOOGLE_APPLICATION_CREDENTIALS" in os.environ:
|
19 |
+
credentials_path = os.environ["GOOGLE_APPLICATION_CREDENTIALS"]
|
20 |
+
print(f"β
Using GCP credentials from file at {credentials_path}")
|
21 |
+
credentials = service_account.Credentials.from_service_account_file(credentials_path)
|
22 |
+
return credentials
|
23 |
+
|
24 |
+
# Option 3: Streamlit secrets
|
25 |
+
elif "gcp_credentials" in st.secrets:
|
26 |
+
gcp_credentials = st.secrets["gcp_credentials"]
|
27 |
+
|
28 |
+
# Handle different secret formats
|
29 |
+
if isinstance(gcp_credentials, dict) or hasattr(gcp_credentials, 'to_dict'):
|
30 |
+
# Convert AttrDict to dict if needed
|
31 |
+
if hasattr(gcp_credentials, 'to_dict'):
|
32 |
+
gcp_credentials = gcp_credentials.to_dict()
|
33 |
+
|
34 |
+
print("β
Using GCP credentials from Streamlit secrets (dict format)")
|
35 |
+
credentials = service_account.Credentials.from_service_account_info(gcp_credentials)
|
36 |
+
return credentials
|
37 |
+
else:
|
38 |
+
# Assume it's a JSON string
|
39 |
+
try:
|
40 |
+
gcp_credentials_dict = json.loads(gcp_credentials)
|
41 |
+
print("β
Using GCP credentials from Streamlit secrets (JSON string)")
|
42 |
+
credentials = service_account.Credentials.from_service_account_info(gcp_credentials_dict)
|
43 |
+
return credentials
|
44 |
+
except json.JSONDecodeError:
|
45 |
+
print("β οΈ GCP credentials in Streamlit secrets is not valid JSON, trying as file path")
|
46 |
+
if os.path.exists(gcp_credentials):
|
47 |
+
credentials = service_account.Credentials.from_service_account_file(gcp_credentials)
|
48 |
+
return credentials
|
49 |
+
else:
|
50 |
+
raise ValueError("GCP credentials format not recognized")
|
51 |
+
|
52 |
+
else:
|
53 |
+
raise ValueError("No GCP credentials found in environment or Streamlit secrets")
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
error_msg = f"β Authentication error: {str(e)}"
|
57 |
+
print(error_msg)
|
58 |
+
st.error(error_msg)
|
59 |
+
raise
|
60 |
+
|
61 |
+
def setup_openai_auth():
|
62 |
+
"""Setup OpenAI API authentication from environment variables or Streamlit secrets."""
|
63 |
+
try:
|
64 |
+
# Option 1: Standard environment variable
|
65 |
+
if "OPENAI_API_KEY" in os.environ:
|
66 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
67 |
+
print("β
Using OpenAI API key from environment variable")
|
68 |
+
return
|
69 |
+
|
70 |
+
# Option 2: HF Spaces environment variable with different name
|
71 |
+
elif "OPENAI_KEY" in os.environ:
|
72 |
+
openai.api_key = os.getenv("OPENAI_KEY")
|
73 |
+
print("β
Using OpenAI API key from HF Spaces environment variable")
|
74 |
+
return
|
75 |
+
|
76 |
+
# Option 3: Streamlit secrets
|
77 |
+
elif "openai_api_key" in st.secrets:
|
78 |
+
openai.api_key = st.secrets["openai_api_key"]
|
79 |
+
print("β
Using OpenAI API key from Streamlit secrets")
|
80 |
+
return
|
81 |
+
|
82 |
+
else:
|
83 |
+
raise ValueError("No OpenAI API key found in environment or Streamlit secrets")
|
84 |
+
|
85 |
+
except Exception as e:
|
86 |
+
error_msg = f"β OpenAI authentication error: {str(e)}"
|
87 |
+
print(error_msg)
|
88 |
+
st.error(error_msg)
|
89 |
+
raise
|
90 |
+
|
91 |
+
def setup_all_auth():
|
92 |
+
"""Setup all authentication in one call"""
|
93 |
+
gcp_creds = setup_gcp_auth()
|
94 |
+
setup_openai_auth()
|
95 |
+
return gcp_creds
|