Spaces:
Sleeping
Sleeping
Update rag_engine.py
Browse files- rag_engine.py +66 -63
rag_engine.py
CHANGED
|
@@ -11,23 +11,22 @@ import textwrap
|
|
| 11 |
import unicodedata
|
| 12 |
import streamlit as st
|
| 13 |
from utils import setup_gcp_auth, setup_openai_auth
|
| 14 |
-
import gc
|
| 15 |
|
| 16 |
# Force model to CPU for stability
|
| 17 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
st.session_state.tokenizer = None
|
| 25 |
-
st.session_state.device = torch.device("cpu")
|
| 26 |
-
st.session_state.data_loaded = False
|
| 27 |
-
print("Initialized session state variables")
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# Load GCP authentication from utility function
|
| 33 |
def setup_gcp_client():
|
|
@@ -52,59 +51,49 @@ def setup_openai_client():
|
|
| 52 |
print(f"β OpenAI client initialization error: {str(e)}")
|
| 53 |
return False
|
| 54 |
|
| 55 |
-
# GCS Paths
|
| 56 |
-
metadata_file_gcs = "metadata/metadata.jsonl"
|
| 57 |
-
embeddings_file_gcs = "processed/embeddings/all_embeddings.npy"
|
| 58 |
-
faiss_index_file_gcs = "processed/indices/faiss_index.faiss"
|
| 59 |
-
text_chunks_file_gcs = "processed/chunks/text_chunks.txt"
|
| 60 |
-
|
| 61 |
-
# Local Paths
|
| 62 |
-
local_embeddings_file = "all_embeddings.npy"
|
| 63 |
-
local_faiss_index_file = "faiss_index.faiss"
|
| 64 |
-
local_text_chunks_file = "text_chunks.txt"
|
| 65 |
-
local_metadata_file = "metadata.jsonl"
|
| 66 |
-
|
| 67 |
def load_model():
|
|
|
|
| 68 |
try:
|
| 69 |
-
# Check if model
|
| 70 |
-
if st.session_state
|
| 71 |
-
print("Model already loaded
|
| 72 |
return st.session_state.tokenizer, st.session_state.model
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
|
| 80 |
-
|
|
|
|
| 81 |
model = AutoModel.from_pretrained(
|
| 82 |
"intfloat/e5-small-v2",
|
| 83 |
-
torch_dtype=torch.float16
|
| 84 |
)
|
| 85 |
|
| 86 |
-
# Move
|
| 87 |
-
model = model.to(
|
| 88 |
model.eval()
|
|
|
|
|
|
|
| 89 |
torch.set_grad_enabled(False)
|
| 90 |
|
| 91 |
# Store in session state
|
| 92 |
st.session_state.tokenizer = tokenizer
|
| 93 |
st.session_state.model = model
|
| 94 |
-
st.session_state.model_initialized = True
|
| 95 |
|
| 96 |
print("β
Model loaded successfully")
|
| 97 |
-
|
| 98 |
return tokenizer, model
|
|
|
|
| 99 |
except Exception as e:
|
| 100 |
print(f"β Error loading model: {str(e)}")
|
| 101 |
-
# Return None values
|
| 102 |
return None, None
|
| 103 |
|
| 104 |
def download_file_from_gcs(bucket, gcs_path, local_path):
|
| 105 |
"""Download a file from GCS to local storage."""
|
| 106 |
try:
|
| 107 |
-
# Check if file already exists
|
| 108 |
if os.path.exists(local_path):
|
| 109 |
print(f"File already exists locally: {local_path}")
|
| 110 |
return True
|
|
@@ -118,12 +107,13 @@ def download_file_from_gcs(bucket, gcs_path, local_path):
|
|
| 118 |
return False
|
| 119 |
|
| 120 |
def load_data_files():
|
|
|
|
| 121 |
# Check if already loaded in session state
|
| 122 |
-
if
|
| 123 |
print("Using cached data files from session state")
|
| 124 |
return st.session_state.faiss_index, st.session_state.text_chunks, st.session_state.metadata_dict
|
| 125 |
|
| 126 |
-
# Initialize
|
| 127 |
bucket = setup_gcp_client()
|
| 128 |
openai_initialized = setup_openai_client()
|
| 129 |
|
|
@@ -160,24 +150,23 @@ def load_data_files():
|
|
| 160 |
print(f"β Error loading text chunks: {str(e)}")
|
| 161 |
return None, None, None
|
| 162 |
|
| 163 |
-
# Load metadata
|
| 164 |
try:
|
| 165 |
metadata_dict = {}
|
| 166 |
with open(local_metadata_file, "r", encoding="utf-8") as f:
|
| 167 |
for line in f:
|
| 168 |
item = json.loads(line)
|
| 169 |
-
metadata_dict[item["Title"]] = item
|
| 170 |
except Exception as e:
|
| 171 |
print(f"β Error loading metadata: {str(e)}")
|
| 172 |
return None, None, None
|
| 173 |
|
| 174 |
-
print(f"β
|
| 175 |
|
| 176 |
# Store in session state
|
| 177 |
st.session_state.faiss_index = faiss_index
|
| 178 |
st.session_state.text_chunks = text_chunks
|
| 179 |
st.session_state.metadata_dict = metadata_dict
|
| 180 |
-
st.session_state.data_loaded = True
|
| 181 |
|
| 182 |
return faiss_index, text_chunks, metadata_dict
|
| 183 |
|
|
@@ -186,25 +175,31 @@ def average_pool(last_hidden_states, attention_mask):
|
|
| 186 |
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
| 187 |
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
| 188 |
|
|
|
|
| 189 |
query_embedding_cache = {}
|
| 190 |
|
| 191 |
def get_embedding(text):
|
|
|
|
|
|
|
| 192 |
if text in query_embedding_cache:
|
| 193 |
return query_embedding_cache[text]
|
| 194 |
|
| 195 |
try:
|
| 196 |
-
#
|
| 197 |
-
if not
|
| 198 |
tokenizer, model = load_model()
|
| 199 |
-
if model is None:
|
| 200 |
-
return np.zeros((1, 384), dtype=np.float32)
|
| 201 |
else:
|
| 202 |
tokenizer, model = st.session_state.tokenizer, st.session_state.model
|
| 203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
# Prepare text
|
| 205 |
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
|
| 206 |
|
| 207 |
-
#
|
| 208 |
inputs = tokenizer(
|
| 209 |
input_text,
|
| 210 |
padding=True,
|
|
@@ -214,20 +209,18 @@ def get_embedding(text):
|
|
| 214 |
return_attention_mask=True
|
| 215 |
)
|
| 216 |
|
| 217 |
-
#
|
| 218 |
-
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
| 219 |
-
|
| 220 |
with torch.no_grad():
|
| 221 |
outputs = model(**inputs)
|
| 222 |
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
|
| 223 |
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
|
| 224 |
embeddings = embeddings.detach().cpu().numpy()
|
| 225 |
|
| 226 |
-
#
|
| 227 |
del outputs, inputs
|
| 228 |
gc.collect()
|
| 229 |
-
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 230 |
|
|
|
|
| 231 |
query_embedding_cache[text] = embeddings
|
| 232 |
return embeddings
|
| 233 |
except Exception as e:
|
|
@@ -238,7 +231,11 @@ def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, s
|
|
| 238 |
"""Retrieve top-k most relevant passages using FAISS with metadata."""
|
| 239 |
try:
|
| 240 |
print(f"\nπ Retrieving passages for query: {query}")
|
|
|
|
|
|
|
| 241 |
query_embedding = get_embedding(query)
|
|
|
|
|
|
|
| 242 |
distances, indices = faiss_index.search(query_embedding, top_k * 2)
|
| 243 |
|
| 244 |
print(f"Found {len(distances[0])} potential matches")
|
|
@@ -246,29 +243,31 @@ def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, s
|
|
| 246 |
retrieved_sources = []
|
| 247 |
cited_titles = set()
|
| 248 |
|
|
|
|
| 249 |
for dist, idx in zip(distances[0], indices[0]):
|
| 250 |
print(f"Distance: {dist:.4f}, Index: {idx}")
|
| 251 |
if idx in text_chunks and dist >= similarity_threshold:
|
| 252 |
title_with_txt, author, text = text_chunks[idx]
|
| 253 |
|
| 254 |
-
#
|
| 255 |
clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
|
| 256 |
clean_title = unicodedata.normalize("NFC", clean_title)
|
| 257 |
|
| 258 |
-
#
|
| 259 |
if clean_title in cited_titles:
|
| 260 |
continue
|
| 261 |
|
| 262 |
-
# Get metadata
|
| 263 |
metadata_entry = metadata_dict.get(clean_title, {})
|
| 264 |
author = metadata_entry.get("Author", "Unknown")
|
| 265 |
publisher = metadata_entry.get("Publisher", "Unknown")
|
| 266 |
|
|
|
|
| 267 |
cited_titles.add(clean_title)
|
| 268 |
-
|
| 269 |
retrieved_passages.append(text)
|
| 270 |
retrieved_sources.append((clean_title, author, publisher))
|
| 271 |
|
|
|
|
| 272 |
if len(retrieved_passages) == top_k:
|
| 273 |
break
|
| 274 |
|
|
@@ -279,10 +278,9 @@ def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, s
|
|
| 279 |
return [], []
|
| 280 |
|
| 281 |
def answer_with_llm(query, context=None, word_limit=100):
|
| 282 |
-
"""
|
| 283 |
-
Generate an answer using OpenAI GPT model with formatted citations.
|
| 284 |
-
"""
|
| 285 |
try:
|
|
|
|
| 286 |
if context:
|
| 287 |
formatted_contexts = []
|
| 288 |
total_chars = 0
|
|
@@ -312,6 +310,7 @@ def answer_with_llm(query, context=None, word_limit=100):
|
|
| 312 |
"Ensure proper citation and do not include direct excerpts."
|
| 313 |
)
|
| 314 |
|
|
|
|
| 315 |
user_message = f"""
|
| 316 |
Context:
|
| 317 |
{formatted_context}
|
|
@@ -319,6 +318,7 @@ def answer_with_llm(query, context=None, word_limit=100):
|
|
| 319 |
{query}
|
| 320 |
"""
|
| 321 |
|
|
|
|
| 322 |
response = openai.chat.completions.create(
|
| 323 |
model="gpt-3.5-turbo",
|
| 324 |
messages=[
|
|
@@ -371,6 +371,7 @@ def process_query(query, top_k=5, word_limit=100):
|
|
| 371 |
"citations": "No citations available."
|
| 372 |
}
|
| 373 |
|
|
|
|
| 374 |
retrieved_context, retrieved_sources = retrieve_passages(
|
| 375 |
query,
|
| 376 |
faiss_index,
|
|
@@ -379,8 +380,10 @@ def process_query(query, top_k=5, word_limit=100):
|
|
| 379 |
top_k=top_k
|
| 380 |
)
|
| 381 |
|
|
|
|
| 382 |
sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."
|
| 383 |
|
|
|
|
| 384 |
if retrieved_context:
|
| 385 |
context_with_sources = list(zip(retrieved_sources, retrieved_context))
|
| 386 |
llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
|
|
|
|
| 11 |
import unicodedata
|
| 12 |
import streamlit as st
|
| 13 |
from utils import setup_gcp_auth, setup_openai_auth
|
| 14 |
+
import gc
|
| 15 |
|
| 16 |
# Force model to CPU for stability
|
| 17 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
| 18 |
|
| 19 |
+
# GCS Paths
|
| 20 |
+
metadata_file_gcs = "metadata/metadata.jsonl"
|
| 21 |
+
embeddings_file_gcs = "processed/embeddings/all_embeddings.npy"
|
| 22 |
+
faiss_index_file_gcs = "processed/indices/faiss_index.faiss"
|
| 23 |
+
text_chunks_file_gcs = "processed/chunks/text_chunks.txt"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Local Paths
|
| 26 |
+
local_embeddings_file = "all_embeddings.npy"
|
| 27 |
+
local_faiss_index_file = "faiss_index.faiss"
|
| 28 |
+
local_text_chunks_file = "text_chunks.txt"
|
| 29 |
+
local_metadata_file = "metadata.jsonl"
|
| 30 |
|
| 31 |
# Load GCP authentication from utility function
|
| 32 |
def setup_gcp_client():
|
|
|
|
| 51 |
print(f"β OpenAI client initialization error: {str(e)}")
|
| 52 |
return False
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
def load_model():
|
| 55 |
+
"""Load the embedding model and store in session state"""
|
| 56 |
try:
|
| 57 |
+
# Check if model already loaded
|
| 58 |
+
if 'model' in st.session_state and st.session_state.model is not None:
|
| 59 |
+
print("Model already loaded in session state")
|
| 60 |
return st.session_state.tokenizer, st.session_state.model
|
| 61 |
+
|
| 62 |
+
print("Loading new model instance...")
|
|
|
|
| 63 |
|
| 64 |
+
# Force model to CPU
|
| 65 |
+
device = torch.device("cpu")
|
| 66 |
|
| 67 |
+
# Load tokenizer and model
|
| 68 |
+
tokenizer = AutoTokenizer.from_pretrained("intfloat/e5-small-v2")
|
| 69 |
model = AutoModel.from_pretrained(
|
| 70 |
"intfloat/e5-small-v2",
|
| 71 |
+
torch_dtype=torch.float16
|
| 72 |
)
|
| 73 |
|
| 74 |
+
# Move to CPU and set to eval mode
|
| 75 |
+
model = model.to(device)
|
| 76 |
model.eval()
|
| 77 |
+
|
| 78 |
+
# Disable gradient computation
|
| 79 |
torch.set_grad_enabled(False)
|
| 80 |
|
| 81 |
# Store in session state
|
| 82 |
st.session_state.tokenizer = tokenizer
|
| 83 |
st.session_state.model = model
|
|
|
|
| 84 |
|
| 85 |
print("β
Model loaded successfully")
|
|
|
|
| 86 |
return tokenizer, model
|
| 87 |
+
|
| 88 |
except Exception as e:
|
| 89 |
print(f"β Error loading model: {str(e)}")
|
| 90 |
+
# Return None values - don't raise exception
|
| 91 |
return None, None
|
| 92 |
|
| 93 |
def download_file_from_gcs(bucket, gcs_path, local_path):
|
| 94 |
"""Download a file from GCS to local storage."""
|
| 95 |
try:
|
| 96 |
+
# Check if file already exists
|
| 97 |
if os.path.exists(local_path):
|
| 98 |
print(f"File already exists locally: {local_path}")
|
| 99 |
return True
|
|
|
|
| 107 |
return False
|
| 108 |
|
| 109 |
def load_data_files():
|
| 110 |
+
"""Load FAISS index, text chunks, and metadata"""
|
| 111 |
# Check if already loaded in session state
|
| 112 |
+
if 'faiss_index' in st.session_state and st.session_state.faiss_index is not None:
|
| 113 |
print("Using cached data files from session state")
|
| 114 |
return st.session_state.faiss_index, st.session_state.text_chunks, st.session_state.metadata_dict
|
| 115 |
|
| 116 |
+
# Initialize clients
|
| 117 |
bucket = setup_gcp_client()
|
| 118 |
openai_initialized = setup_openai_client()
|
| 119 |
|
|
|
|
| 150 |
print(f"β Error loading text chunks: {str(e)}")
|
| 151 |
return None, None, None
|
| 152 |
|
| 153 |
+
# Load metadata
|
| 154 |
try:
|
| 155 |
metadata_dict = {}
|
| 156 |
with open(local_metadata_file, "r", encoding="utf-8") as f:
|
| 157 |
for line in f:
|
| 158 |
item = json.loads(line)
|
| 159 |
+
metadata_dict[item["Title"]] = item
|
| 160 |
except Exception as e:
|
| 161 |
print(f"β Error loading metadata: {str(e)}")
|
| 162 |
return None, None, None
|
| 163 |
|
| 164 |
+
print(f"β
Data loaded successfully: {len(text_chunks)} passages available")
|
| 165 |
|
| 166 |
# Store in session state
|
| 167 |
st.session_state.faiss_index = faiss_index
|
| 168 |
st.session_state.text_chunks = text_chunks
|
| 169 |
st.session_state.metadata_dict = metadata_dict
|
|
|
|
| 170 |
|
| 171 |
return faiss_index, text_chunks, metadata_dict
|
| 172 |
|
|
|
|
| 175 |
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
| 176 |
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
| 177 |
|
| 178 |
+
# Cache for query embeddings
|
| 179 |
query_embedding_cache = {}
|
| 180 |
|
| 181 |
def get_embedding(text):
|
| 182 |
+
"""Generate embeddings for a text query"""
|
| 183 |
+
# Check cache first
|
| 184 |
if text in query_embedding_cache:
|
| 185 |
return query_embedding_cache[text]
|
| 186 |
|
| 187 |
try:
|
| 188 |
+
# Get model
|
| 189 |
+
if 'model' not in st.session_state or st.session_state.model is None:
|
| 190 |
tokenizer, model = load_model()
|
|
|
|
|
|
|
| 191 |
else:
|
| 192 |
tokenizer, model = st.session_state.tokenizer, st.session_state.model
|
| 193 |
|
| 194 |
+
# Handle model load failure
|
| 195 |
+
if model is None:
|
| 196 |
+
print("Model is None, returning zero embedding")
|
| 197 |
+
return np.zeros((1, 384), dtype=np.float32)
|
| 198 |
+
|
| 199 |
# Prepare text
|
| 200 |
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
|
| 201 |
|
| 202 |
+
# Tokenize
|
| 203 |
inputs = tokenizer(
|
| 204 |
input_text,
|
| 205 |
padding=True,
|
|
|
|
| 209 |
return_attention_mask=True
|
| 210 |
)
|
| 211 |
|
| 212 |
+
# Generate embeddings
|
|
|
|
|
|
|
| 213 |
with torch.no_grad():
|
| 214 |
outputs = model(**inputs)
|
| 215 |
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
|
| 216 |
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
|
| 217 |
embeddings = embeddings.detach().cpu().numpy()
|
| 218 |
|
| 219 |
+
# Clean up
|
| 220 |
del outputs, inputs
|
| 221 |
gc.collect()
|
|
|
|
| 222 |
|
| 223 |
+
# Cache and return
|
| 224 |
query_embedding_cache[text] = embeddings
|
| 225 |
return embeddings
|
| 226 |
except Exception as e:
|
|
|
|
| 231 |
"""Retrieve top-k most relevant passages using FAISS with metadata."""
|
| 232 |
try:
|
| 233 |
print(f"\nπ Retrieving passages for query: {query}")
|
| 234 |
+
|
| 235 |
+
# Get query embedding
|
| 236 |
query_embedding = get_embedding(query)
|
| 237 |
+
|
| 238 |
+
# Search in FAISS index
|
| 239 |
distances, indices = faiss_index.search(query_embedding, top_k * 2)
|
| 240 |
|
| 241 |
print(f"Found {len(distances[0])} potential matches")
|
|
|
|
| 243 |
retrieved_sources = []
|
| 244 |
cited_titles = set()
|
| 245 |
|
| 246 |
+
# Process results
|
| 247 |
for dist, idx in zip(distances[0], indices[0]):
|
| 248 |
print(f"Distance: {dist:.4f}, Index: {idx}")
|
| 249 |
if idx in text_chunks and dist >= similarity_threshold:
|
| 250 |
title_with_txt, author, text = text_chunks[idx]
|
| 251 |
|
| 252 |
+
# Clean title
|
| 253 |
clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt
|
| 254 |
clean_title = unicodedata.normalize("NFC", clean_title)
|
| 255 |
|
| 256 |
+
# Skip duplicates
|
| 257 |
if clean_title in cited_titles:
|
| 258 |
continue
|
| 259 |
|
| 260 |
+
# Get metadata
|
| 261 |
metadata_entry = metadata_dict.get(clean_title, {})
|
| 262 |
author = metadata_entry.get("Author", "Unknown")
|
| 263 |
publisher = metadata_entry.get("Publisher", "Unknown")
|
| 264 |
|
| 265 |
+
# Add to results
|
| 266 |
cited_titles.add(clean_title)
|
|
|
|
| 267 |
retrieved_passages.append(text)
|
| 268 |
retrieved_sources.append((clean_title, author, publisher))
|
| 269 |
|
| 270 |
+
# Stop if we have enough
|
| 271 |
if len(retrieved_passages) == top_k:
|
| 272 |
break
|
| 273 |
|
|
|
|
| 278 |
return [], []
|
| 279 |
|
| 280 |
def answer_with_llm(query, context=None, word_limit=100):
|
| 281 |
+
"""Generate an answer using OpenAI GPT model with formatted citations."""
|
|
|
|
|
|
|
| 282 |
try:
|
| 283 |
+
# Format context
|
| 284 |
if context:
|
| 285 |
formatted_contexts = []
|
| 286 |
total_chars = 0
|
|
|
|
| 310 |
"Ensure proper citation and do not include direct excerpts."
|
| 311 |
)
|
| 312 |
|
| 313 |
+
# User message
|
| 314 |
user_message = f"""
|
| 315 |
Context:
|
| 316 |
{formatted_context}
|
|
|
|
| 318 |
{query}
|
| 319 |
"""
|
| 320 |
|
| 321 |
+
# Call OpenAI API
|
| 322 |
response = openai.chat.completions.create(
|
| 323 |
model="gpt-3.5-turbo",
|
| 324 |
messages=[
|
|
|
|
| 371 |
"citations": "No citations available."
|
| 372 |
}
|
| 373 |
|
| 374 |
+
# Get relevant passages
|
| 375 |
retrieved_context, retrieved_sources = retrieve_passages(
|
| 376 |
query,
|
| 377 |
faiss_index,
|
|
|
|
| 380 |
top_k=top_k
|
| 381 |
)
|
| 382 |
|
| 383 |
+
# Format citations
|
| 384 |
sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available."
|
| 385 |
|
| 386 |
+
# Generate answer
|
| 387 |
if retrieved_context:
|
| 388 |
context_with_sources = list(zip(retrieved_sources, retrieved_context))
|
| 389 |
llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit)
|