Spaces:
Sleeping
Sleeping
Update rag_engine.py
Browse files- rag_engine.py +22 -23
rag_engine.py
CHANGED
@@ -66,33 +66,32 @@ local_metadata_file = "metadata.jsonl"
|
|
66 |
|
67 |
def load_model():
|
68 |
try:
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
|
92 |
return st.session_state.tokenizer, st.session_state.model
|
93 |
except Exception as e:
|
94 |
print(f"❌ Error loading model: {str(e)}")
|
95 |
-
st.error(f"Error loading model: {str(e)}")
|
96 |
raise
|
97 |
|
98 |
def download_file_from_gcs(bucket, gcs_path, local_path):
|
|
|
66 |
|
67 |
def load_model():
|
68 |
try:
|
69 |
+
if st.session_state.model is None:
|
70 |
+
# Force model to CPU - more stable than GPU for this use case
|
71 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
72 |
+
|
73 |
+
print("Loading tokenizer...")
|
74 |
+
tokenizer = AutoTokenizer.from_pretrained("intfloat/e5-small-v2")
|
75 |
+
|
76 |
+
print("Loading model...")
|
77 |
+
model = AutoModel.from_pretrained(
|
78 |
+
"intfloat/e5-small-v2",
|
79 |
+
torch_dtype=torch.float16 # Use half precision
|
80 |
+
)
|
81 |
+
|
82 |
+
# Move model to the designated device
|
83 |
+
model = model.to(st.session_state.device)
|
84 |
+
model.eval()
|
85 |
+
torch.set_grad_enabled(False)
|
86 |
+
|
87 |
+
st.session_state.tokenizer = tokenizer
|
88 |
+
st.session_state.model = model
|
89 |
+
|
90 |
+
print("✅ Model loaded successfully")
|
91 |
|
92 |
return st.session_state.tokenizer, st.session_state.model
|
93 |
except Exception as e:
|
94 |
print(f"❌ Error loading model: {str(e)}")
|
|
|
95 |
raise
|
96 |
|
97 |
def download_file_from_gcs(bucket, gcs_path, local_path):
|