Spaces:
Running
Running
Update rag_engine.py
Browse files- rag_engine.py +70 -52
rag_engine.py
CHANGED
|
@@ -11,6 +11,7 @@ import textwrap
|
|
| 11 |
import unicodedata
|
| 12 |
import streamlit as st
|
| 13 |
from utils import setup_gcp_auth, setup_openai_auth
|
|
|
|
| 14 |
|
| 15 |
# Force model to CPU for stability
|
| 16 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
|
@@ -22,6 +23,7 @@ def initialize_session_state():
|
|
| 22 |
st.session_state.model = None
|
| 23 |
st.session_state.tokenizer = None
|
| 24 |
st.session_state.device = torch.device("cpu")
|
|
|
|
| 25 |
print("Initialized session state variables")
|
| 26 |
|
| 27 |
# Call the initialization function right away
|
|
@@ -38,7 +40,6 @@ def setup_gcp_client():
|
|
| 38 |
return bucket
|
| 39 |
except Exception as e:
|
| 40 |
print(f"β GCP client initialization error: {str(e)}")
|
| 41 |
-
st.error(f"GCP client initialization error: {str(e)}")
|
| 42 |
return None
|
| 43 |
|
| 44 |
# Setup OpenAI authentication
|
|
@@ -49,7 +50,6 @@ def setup_openai_client():
|
|
| 49 |
return True
|
| 50 |
except Exception as e:
|
| 51 |
print(f"β OpenAI client initialization error: {str(e)}")
|
| 52 |
-
st.error(f"OpenAI client initialization error: {str(e)}")
|
| 53 |
return False
|
| 54 |
|
| 55 |
# GCS Paths
|
|
@@ -66,32 +66,36 @@ local_metadata_file = "metadata.jsonl"
|
|
| 66 |
|
| 67 |
def load_model():
|
| 68 |
try:
|
| 69 |
-
#
|
| 70 |
-
if
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
#
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
return
|
| 95 |
except Exception as e:
|
| 96 |
print(f"β Error loading model: {str(e)}")
|
| 97 |
# Return None values instead of raising to avoid crashing
|
|
@@ -100,32 +104,41 @@ def load_model():
|
|
| 100 |
def download_file_from_gcs(bucket, gcs_path, local_path):
|
| 101 |
"""Download a file from GCS to local storage."""
|
| 102 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
blob = bucket.blob(gcs_path)
|
| 104 |
blob.download_to_filename(local_path)
|
| 105 |
print(f"β
Downloaded {gcs_path} β {local_path}")
|
| 106 |
return True
|
| 107 |
except Exception as e:
|
| 108 |
print(f"β Error downloading {gcs_path}: {str(e)}")
|
| 109 |
-
st.error(f"Error downloading {gcs_path}: {str(e)}")
|
| 110 |
return False
|
| 111 |
|
| 112 |
def load_data_files():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
# Initialize GCP and OpenAI clients
|
| 114 |
bucket = setup_gcp_client()
|
| 115 |
openai_initialized = setup_openai_client()
|
| 116 |
|
| 117 |
if not bucket or not openai_initialized:
|
| 118 |
-
|
| 119 |
return None, None, None
|
| 120 |
|
| 121 |
-
# Download necessary files
|
| 122 |
success = True
|
| 123 |
success &= download_file_from_gcs(bucket, faiss_index_file_gcs, local_faiss_index_file)
|
| 124 |
success &= download_file_from_gcs(bucket, text_chunks_file_gcs, local_text_chunks_file)
|
| 125 |
success &= download_file_from_gcs(bucket, metadata_file_gcs, local_metadata_file)
|
| 126 |
|
| 127 |
if not success:
|
| 128 |
-
|
| 129 |
return None, None, None
|
| 130 |
|
| 131 |
# Load FAISS index
|
|
@@ -133,7 +146,6 @@ def load_data_files():
|
|
| 133 |
faiss_index = faiss.read_index(local_faiss_index_file)
|
| 134 |
except Exception as e:
|
| 135 |
print(f"β Error loading FAISS index: {str(e)}")
|
| 136 |
-
st.error(f"Error loading FAISS index: {str(e)}")
|
| 137 |
return None, None, None
|
| 138 |
|
| 139 |
# Load text chunks
|
|
@@ -146,7 +158,6 @@ def load_data_files():
|
|
| 146 |
text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
|
| 147 |
except Exception as e:
|
| 148 |
print(f"β Error loading text chunks: {str(e)}")
|
| 149 |
-
st.error(f"Error loading text chunks: {str(e)}")
|
| 150 |
return None, None, None
|
| 151 |
|
| 152 |
# Load metadata.jsonl for publisher information
|
|
@@ -158,10 +169,16 @@ def load_data_files():
|
|
| 158 |
metadata_dict[item["Title"]] = item # Store for easy lookup
|
| 159 |
except Exception as e:
|
| 160 |
print(f"β Error loading metadata: {str(e)}")
|
| 161 |
-
st.error(f"Error loading metadata: {str(e)}")
|
| 162 |
return None, None, None
|
| 163 |
|
| 164 |
print(f"β
FAISS index and text chunks loaded. {len(text_chunks)} passages available.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
return faiss_index, text_chunks, metadata_dict
|
| 166 |
|
| 167 |
def average_pool(last_hidden_states, attention_mask):
|
|
@@ -177,16 +194,17 @@ def get_embedding(text):
|
|
| 177 |
|
| 178 |
try:
|
| 179 |
# Ensure model initialization
|
| 180 |
-
if
|
| 181 |
tokenizer, model = load_model()
|
| 182 |
if model is None:
|
| 183 |
-
return np.zeros((1, 384), dtype=np.float32)
|
| 184 |
else:
|
| 185 |
tokenizer, model = st.session_state.tokenizer, st.session_state.model
|
| 186 |
|
|
|
|
| 187 |
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
|
| 188 |
|
| 189 |
-
# Explicitly specify truncation parameters
|
| 190 |
inputs = tokenizer(
|
| 191 |
input_text,
|
| 192 |
padding=True,
|
|
@@ -196,26 +214,25 @@ def get_embedding(text):
|
|
| 196 |
return_attention_mask=True
|
| 197 |
)
|
| 198 |
|
| 199 |
-
# Move to CPU explicitly
|
| 200 |
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
| 201 |
|
| 202 |
with torch.no_grad():
|
| 203 |
outputs = model(**inputs)
|
| 204 |
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
|
| 205 |
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
|
| 206 |
-
# Ensure we detach and move to numpy on CPU
|
| 207 |
embeddings = embeddings.detach().cpu().numpy()
|
| 208 |
|
| 209 |
# Explicitly clean up
|
| 210 |
-
del outputs
|
|
|
|
| 211 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 212 |
|
| 213 |
query_embedding_cache[text] = embeddings
|
| 214 |
return embeddings
|
| 215 |
except Exception as e:
|
| 216 |
print(f"β Embedding error: {str(e)}")
|
| 217 |
-
|
| 218 |
-
return np.zeros((1, 384), dtype=np.float32) # Changed from 1024 to 384 for e5-small-v2
|
| 219 |
|
| 220 |
def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
|
| 221 |
"""Retrieve top-k most relevant passages using FAISS with metadata."""
|
|
@@ -242,6 +259,7 @@ def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, s
|
|
| 242 |
if clean_title in cited_titles:
|
| 243 |
continue
|
| 244 |
|
|
|
|
| 245 |
metadata_entry = metadata_dict.get(clean_title, {})
|
| 246 |
author = metadata_entry.get("Author", "Unknown")
|
| 247 |
publisher = metadata_entry.get("Publisher", "Unknown")
|
|
@@ -258,7 +276,6 @@ def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, s
|
|
| 258 |
return retrieved_passages, retrieved_sources
|
| 259 |
except Exception as e:
|
| 260 |
print(f"β Error in retrieve_passages: {str(e)}")
|
| 261 |
-
st.error(f"Error in retrieve_passages: {str(e)}")
|
| 262 |
return [], []
|
| 263 |
|
| 264 |
def answer_with_llm(query, context=None, word_limit=100):
|
|
@@ -325,7 +342,6 @@ def answer_with_llm(query, context=None, word_limit=100):
|
|
| 325 |
|
| 326 |
except Exception as e:
|
| 327 |
print(f"β LLM API error: {str(e)}")
|
| 328 |
-
st.error(f"LLM API error: {str(e)}")
|
| 329 |
return "I apologize, but I'm unable to answer at the moment."
|
| 330 |
|
| 331 |
def format_citations(sources):
|
|
@@ -345,19 +361,21 @@ def process_query(query, top_k=5, word_limit=100):
|
|
| 345 |
print(f"\nπ Processing query: {query}")
|
| 346 |
|
| 347 |
# Load data files if not already loaded
|
| 348 |
-
|
| 349 |
-
st.session_state.faiss_index, st.session_state.text_chunks, st.session_state.metadata_dict = load_data_files()
|
| 350 |
-
st.session_state.data_loaded = True
|
| 351 |
|
| 352 |
# Check if data loaded successfully
|
| 353 |
-
if
|
| 354 |
-
return {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
|
| 356 |
retrieved_context, retrieved_sources = retrieve_passages(
|
| 357 |
query,
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
top_k=top_k
|
| 362 |
)
|
| 363 |
|
|
|
|
| 11 |
import unicodedata
|
| 12 |
import streamlit as st
|
| 13 |
from utils import setup_gcp_auth, setup_openai_auth
|
| 14 |
+
import gc # Added for explicit garbage collection
|
| 15 |
|
| 16 |
# Force model to CPU for stability
|
| 17 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
|
|
|
| 23 |
st.session_state.model = None
|
| 24 |
st.session_state.tokenizer = None
|
| 25 |
st.session_state.device = torch.device("cpu")
|
| 26 |
+
st.session_state.data_loaded = False
|
| 27 |
print("Initialized session state variables")
|
| 28 |
|
| 29 |
# Call the initialization function right away
|
|
|
|
| 40 |
return bucket
|
| 41 |
except Exception as e:
|
| 42 |
print(f"β GCP client initialization error: {str(e)}")
|
|
|
|
| 43 |
return None
|
| 44 |
|
| 45 |
# Setup OpenAI authentication
|
|
|
|
| 50 |
return True
|
| 51 |
except Exception as e:
|
| 52 |
print(f"β OpenAI client initialization error: {str(e)}")
|
|
|
|
| 53 |
return False
|
| 54 |
|
| 55 |
# GCS Paths
|
|
|
|
| 66 |
|
| 67 |
def load_model():
|
| 68 |
try:
|
| 69 |
+
# Check if model is already loaded
|
| 70 |
+
if st.session_state.model is not None and st.session_state.tokenizer is not None:
|
| 71 |
+
print("Model already loaded, reusing existing instance")
|
| 72 |
+
return st.session_state.tokenizer, st.session_state.model
|
| 73 |
+
|
| 74 |
+
# Force model to CPU - more stable than GPU for this use case
|
| 75 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
| 76 |
+
|
| 77 |
+
print("Loading tokenizer...")
|
| 78 |
+
tokenizer = AutoTokenizer.from_pretrained("intfloat/e5-small-v2")
|
| 79 |
+
|
| 80 |
+
print("Loading model...")
|
| 81 |
+
model = AutoModel.from_pretrained(
|
| 82 |
+
"intfloat/e5-small-v2",
|
| 83 |
+
torch_dtype=torch.float16 # Use half precision
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
# Move model to CPU explicitly
|
| 87 |
+
model = model.to('cpu')
|
| 88 |
+
model.eval()
|
| 89 |
+
torch.set_grad_enabled(False)
|
| 90 |
+
|
| 91 |
+
# Store in session state
|
| 92 |
+
st.session_state.tokenizer = tokenizer
|
| 93 |
+
st.session_state.model = model
|
| 94 |
+
st.session_state.model_initialized = True
|
| 95 |
+
|
| 96 |
+
print("β
Model loaded successfully")
|
| 97 |
|
| 98 |
+
return tokenizer, model
|
| 99 |
except Exception as e:
|
| 100 |
print(f"β Error loading model: {str(e)}")
|
| 101 |
# Return None values instead of raising to avoid crashing
|
|
|
|
| 104 |
def download_file_from_gcs(bucket, gcs_path, local_path):
|
| 105 |
"""Download a file from GCS to local storage."""
|
| 106 |
try:
|
| 107 |
+
# Check if file already exists locally
|
| 108 |
+
if os.path.exists(local_path):
|
| 109 |
+
print(f"File already exists locally: {local_path}")
|
| 110 |
+
return True
|
| 111 |
+
|
| 112 |
blob = bucket.blob(gcs_path)
|
| 113 |
blob.download_to_filename(local_path)
|
| 114 |
print(f"β
Downloaded {gcs_path} β {local_path}")
|
| 115 |
return True
|
| 116 |
except Exception as e:
|
| 117 |
print(f"β Error downloading {gcs_path}: {str(e)}")
|
|
|
|
| 118 |
return False
|
| 119 |
|
| 120 |
def load_data_files():
|
| 121 |
+
# Check if already loaded in session state
|
| 122 |
+
if hasattr(st.session_state, 'faiss_index') and st.session_state.faiss_index is not None:
|
| 123 |
+
print("Using cached data files from session state")
|
| 124 |
+
return st.session_state.faiss_index, st.session_state.text_chunks, st.session_state.metadata_dict
|
| 125 |
+
|
| 126 |
# Initialize GCP and OpenAI clients
|
| 127 |
bucket = setup_gcp_client()
|
| 128 |
openai_initialized = setup_openai_client()
|
| 129 |
|
| 130 |
if not bucket or not openai_initialized:
|
| 131 |
+
print("Failed to initialize required services")
|
| 132 |
return None, None, None
|
| 133 |
|
| 134 |
+
# Download necessary files
|
| 135 |
success = True
|
| 136 |
success &= download_file_from_gcs(bucket, faiss_index_file_gcs, local_faiss_index_file)
|
| 137 |
success &= download_file_from_gcs(bucket, text_chunks_file_gcs, local_text_chunks_file)
|
| 138 |
success &= download_file_from_gcs(bucket, metadata_file_gcs, local_metadata_file)
|
| 139 |
|
| 140 |
if not success:
|
| 141 |
+
print("Failed to download required files")
|
| 142 |
return None, None, None
|
| 143 |
|
| 144 |
# Load FAISS index
|
|
|
|
| 146 |
faiss_index = faiss.read_index(local_faiss_index_file)
|
| 147 |
except Exception as e:
|
| 148 |
print(f"β Error loading FAISS index: {str(e)}")
|
|
|
|
| 149 |
return None, None, None
|
| 150 |
|
| 151 |
# Load text chunks
|
|
|
|
| 158 |
text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3])
|
| 159 |
except Exception as e:
|
| 160 |
print(f"β Error loading text chunks: {str(e)}")
|
|
|
|
| 161 |
return None, None, None
|
| 162 |
|
| 163 |
# Load metadata.jsonl for publisher information
|
|
|
|
| 169 |
metadata_dict[item["Title"]] = item # Store for easy lookup
|
| 170 |
except Exception as e:
|
| 171 |
print(f"β Error loading metadata: {str(e)}")
|
|
|
|
| 172 |
return None, None, None
|
| 173 |
|
| 174 |
print(f"β
FAISS index and text chunks loaded. {len(text_chunks)} passages available.")
|
| 175 |
+
|
| 176 |
+
# Store in session state
|
| 177 |
+
st.session_state.faiss_index = faiss_index
|
| 178 |
+
st.session_state.text_chunks = text_chunks
|
| 179 |
+
st.session_state.metadata_dict = metadata_dict
|
| 180 |
+
st.session_state.data_loaded = True
|
| 181 |
+
|
| 182 |
return faiss_index, text_chunks, metadata_dict
|
| 183 |
|
| 184 |
def average_pool(last_hidden_states, attention_mask):
|
|
|
|
| 194 |
|
| 195 |
try:
|
| 196 |
# Ensure model initialization
|
| 197 |
+
if not hasattr(st.session_state, 'model') or st.session_state.model is None:
|
| 198 |
tokenizer, model = load_model()
|
| 199 |
if model is None:
|
| 200 |
+
return np.zeros((1, 384), dtype=np.float32)
|
| 201 |
else:
|
| 202 |
tokenizer, model = st.session_state.tokenizer, st.session_state.model
|
| 203 |
|
| 204 |
+
# Prepare text
|
| 205 |
input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}"
|
| 206 |
|
| 207 |
+
# Explicitly specify truncation parameters
|
| 208 |
inputs = tokenizer(
|
| 209 |
input_text,
|
| 210 |
padding=True,
|
|
|
|
| 214 |
return_attention_mask=True
|
| 215 |
)
|
| 216 |
|
| 217 |
+
# Move to CPU explicitly
|
| 218 |
inputs = {k: v.to('cpu') for k, v in inputs.items()}
|
| 219 |
|
| 220 |
with torch.no_grad():
|
| 221 |
outputs = model(**inputs)
|
| 222 |
embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask'])
|
| 223 |
embeddings = nn.functional.normalize(embeddings, p=2, dim=1)
|
|
|
|
| 224 |
embeddings = embeddings.detach().cpu().numpy()
|
| 225 |
|
| 226 |
# Explicitly clean up
|
| 227 |
+
del outputs, inputs
|
| 228 |
+
gc.collect()
|
| 229 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
| 230 |
|
| 231 |
query_embedding_cache[text] = embeddings
|
| 232 |
return embeddings
|
| 233 |
except Exception as e:
|
| 234 |
print(f"β Embedding error: {str(e)}")
|
| 235 |
+
return np.zeros((1, 384), dtype=np.float32)
|
|
|
|
| 236 |
|
| 237 |
def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5):
|
| 238 |
"""Retrieve top-k most relevant passages using FAISS with metadata."""
|
|
|
|
| 259 |
if clean_title in cited_titles:
|
| 260 |
continue
|
| 261 |
|
| 262 |
+
# Get metadata safely
|
| 263 |
metadata_entry = metadata_dict.get(clean_title, {})
|
| 264 |
author = metadata_entry.get("Author", "Unknown")
|
| 265 |
publisher = metadata_entry.get("Publisher", "Unknown")
|
|
|
|
| 276 |
return retrieved_passages, retrieved_sources
|
| 277 |
except Exception as e:
|
| 278 |
print(f"β Error in retrieve_passages: {str(e)}")
|
|
|
|
| 279 |
return [], []
|
| 280 |
|
| 281 |
def answer_with_llm(query, context=None, word_limit=100):
|
|
|
|
| 342 |
|
| 343 |
except Exception as e:
|
| 344 |
print(f"β LLM API error: {str(e)}")
|
|
|
|
| 345 |
return "I apologize, but I'm unable to answer at the moment."
|
| 346 |
|
| 347 |
def format_citations(sources):
|
|
|
|
| 361 |
print(f"\nπ Processing query: {query}")
|
| 362 |
|
| 363 |
# Load data files if not already loaded
|
| 364 |
+
faiss_index, text_chunks, metadata_dict = load_data_files()
|
|
|
|
|
|
|
| 365 |
|
| 366 |
# Check if data loaded successfully
|
| 367 |
+
if faiss_index is None or text_chunks is None or metadata_dict is None:
|
| 368 |
+
return {
|
| 369 |
+
"query": query,
|
| 370 |
+
"answer_with_rag": "β οΈ System error: Data files not loaded properly.",
|
| 371 |
+
"citations": "No citations available."
|
| 372 |
+
}
|
| 373 |
|
| 374 |
retrieved_context, retrieved_sources = retrieve_passages(
|
| 375 |
query,
|
| 376 |
+
faiss_index,
|
| 377 |
+
text_chunks,
|
| 378 |
+
metadata_dict,
|
| 379 |
top_k=top_k
|
| 380 |
)
|
| 381 |
|