import os import json import numpy as np import faiss import torch import torch.nn as nn from google.cloud import storage from transformers import AutoTokenizer, AutoModel import openai import textwrap import unicodedata import streamlit as st from utils import setup_gcp_auth, setup_openai_auth # Initialize session state for model and tokenizer FIRST - before any usage if 'model' not in st.session_state: st.session_state.model = None print("Initialized st.session_state.model to None") if 'tokenizer' not in st.session_state: st.session_state.tokenizer = None print("Initialized st.session_state.tokenizer to None") if 'device' not in st.session_state: st.session_state.device = torch.device("cpu") # Force CPU for stability print(f"Using device: {st.session_state.device}") # Load GCP authentication from utility function try: credentials = setup_gcp_auth() storage_client = storage.Client(credentials=credentials) bucket_name = "indian_spiritual-1" bucket = storage_client.bucket(bucket_name) print("✅ GCP client initialized successfully") except Exception as e: print(f"❌ GCP client initialization error: {str(e)}") raise # Setup OpenAI authentication try: setup_openai_auth() print("✅ OpenAI client initialized successfully") except Exception as e: print(f"❌ OpenAI client initialization error: {str(e)}") raise # GCS Paths metadata_file_gcs = "metadata/metadata.jsonl" embeddings_file_gcs = "processed/embeddings/all_embeddings.npy" faiss_index_file_gcs = "processed/indices/faiss_index.faiss" text_chunks_file_gcs = "processed/chunks/text_chunks.txt" # Local Paths local_embeddings_file = "all_embeddings.npy" local_faiss_index_file = "faiss_index.faiss" local_text_chunks_file = "text_chunks.txt" local_metadata_file = "metadata.jsonl" def load_model(): try: if st.session_state.model is None: # Force model to CPU - more stable than GPU for this use case os.environ["CUDA_VISIBLE_DEVICES"] = "" with st.spinner("Loading tokenizer and model... This may take a minute."): print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained("intfloat/e5-small-v2") print("Loading model...") model = AutoModel.from_pretrained( "intfloat/e5-small-v2", torch_dtype=torch.float16, # Use half precision low_cpu_mem_usage=True, # Remove device_map - it requires accelerate and causes issues ) model.eval() torch.set_grad_enabled(False) st.session_state.tokenizer = tokenizer st.session_state.model = model print("✅ Model loaded successfully") return st.session_state.tokenizer, st.session_state.model except Exception as e: print(f"❌ Error loading model: {str(e)}") st.error(f"Error loading model: {str(e)}") raise def download_file_from_gcs(gcs_path, local_path): """Download a file from GCS to local storage.""" try: blob = bucket.blob(gcs_path) blob.download_to_filename(local_path) print(f"✅ Downloaded {gcs_path} → {local_path}") except Exception as e: print(f"❌ Error downloading {gcs_path}: {str(e)}") st.error(f"Error downloading {gcs_path}: {str(e)}") raise # Add error handling around file downloads try: # Download necessary files with a spinner to show progress with st.spinner("Downloading necessary files..."): download_file_from_gcs(faiss_index_file_gcs, local_faiss_index_file) download_file_from_gcs(text_chunks_file_gcs, local_text_chunks_file) download_file_from_gcs(metadata_file_gcs, local_metadata_file) except Exception as e: st.error(f"Error setting up data files: {str(e)}") raise # Load FAISS index with error handling try: faiss_index = faiss.read_index(local_faiss_index_file) except Exception as e: print(f"❌ Error loading FAISS index: {str(e)}") st.error(f"Error loading FAISS index: {str(e)}") raise # Load text chunks with error handling try: text_chunks = {} # {ID -> (Title, Author, Text)} with open(local_text_chunks_file, "r", encoding="utf-8") as f: for line in f: parts = line.strip().split("\t") if len(parts) == 4: text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3]) except Exception as e: print(f"❌ Error loading text chunks: {str(e)}") st.error(f"Error loading text chunks: {str(e)}") raise # Load metadata.jsonl for publisher information with error handling try: metadata_dict = {} with open(local_metadata_file, "r", encoding="utf-8") as f: for line in f: item = json.loads(line) metadata_dict[item["Title"]] = item # Store for easy lookup except Exception as e: print(f"❌ Error loading metadata: {str(e)}") st.error(f"Error loading metadata: {str(e)}") raise print(f"✅ FAISS index and text chunks loaded. {len(text_chunks)} passages available.") def average_pool(last_hidden_states, attention_mask): """Average pooling for sentence embeddings.""" last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] query_embedding_cache = {} def get_embedding(text): if text in query_embedding_cache: return query_embedding_cache[text] try: tokenizer, model = load_model() input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}" inputs = tokenizer( input_text, padding=True, truncation=True, return_tensors="pt", max_length=512, return_attention_mask=True ) # Move to CPU explicitly before processing inputs = {k: v.to('cpu') for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask']) embeddings = nn.functional.normalize(embeddings, p=2, dim=1) # Ensure we detach and move to numpy on CPU embeddings = embeddings.detach().cpu().numpy() # Explicitly clean up del outputs torch.cuda.empty_cache() if torch.cuda.is_available() else None query_embedding_cache[text] = embeddings return embeddings except Exception as e: print(f"❌ Embedding error: {str(e)}") st.error(f"Embedding error: {str(e)}") return np.zeros((1, 384), dtype=np.float32) # Changed from 1024 to 384 for e5-small-v2 def retrieve_passages(query, top_k=5, similarity_threshold=0.5): """Retrieve top-k most relevant passages using FAISS with metadata.""" try: print(f"\n🔍 Retrieving passages for query: {query}") query_embedding = get_embedding(query) distances, indices = faiss_index.search(query_embedding, top_k * 2) print(f"Found {len(distances[0])} potential matches") retrieved_passages = [] retrieved_sources = [] cited_titles = set() for dist, idx in zip(distances[0], indices[0]): print(f"Distance: {dist:.4f}, Index: {idx}") if idx in text_chunks and dist >= similarity_threshold: title_with_txt, author, text = text_chunks[idx] # Normalize title and remove .txt clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt clean_title = unicodedata.normalize("NFC", clean_title) # Ensure unique citations if clean_title in cited_titles: continue metadata_entry = metadata_dict.get(clean_title, {}) author = metadata_entry.get("Author", "Unknown") publisher = metadata_entry.get("Publisher", "Unknown") cited_titles.add(clean_title) retrieved_passages.append(text) retrieved_sources.append((clean_title, author, publisher)) if len(retrieved_passages) == top_k: break print(f"Retrieved {len(retrieved_passages)} passages") return retrieved_passages, retrieved_sources except Exception as e: print(f"❌ Error in retrieve_passages: {str(e)}") st.error(f"Error in retrieve_passages: {str(e)}") return [], [] def answer_with_llm(query, context=None, word_limit=100): """ Generate an answer using OpenAI GPT model with formatted citations. """ try: if context: formatted_contexts = [] total_chars = 0 max_context_chars = 4000 for (title, author, publisher), text in context: remaining_space = max(0, max_context_chars - total_chars) excerpt_len = min(150, remaining_space) if excerpt_len > 50: excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}" formatted_contexts.append(formatted_context) total_chars += len(formatted_context) if total_chars >= max_context_chars: break formatted_context = "\n".join(formatted_contexts) else: formatted_context = "No relevant information available." # System message system_message = ( "You are an AI specialized in Indian spiritual texts. " "Answer based on context, summarizing ideas rather than quoting verbatim. " "Ensure proper citation and do not include direct excerpts." ) user_message = f""" Context: {formatted_context} Question: {query} """ response = openai.chat.completions.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": system_message}, {"role": "user", "content": user_message} ], max_tokens=200, temperature=0.7 ) answer = response.choices[0].message.content.strip() # Enforce word limit words = answer.split() if len(words) > word_limit: answer = " ".join(words[:word_limit]) if not answer.endswith((".", "!", "?")): answer += "." return answer except Exception as e: print(f"❌ LLM API error: {str(e)}") st.error(f"LLM API error: {str(e)}") return "I apologize, but I'm unable to answer at the moment." def format_citations(sources): """Format citations to display each one on a new line.""" return "\n".join([f"📚 {title} by {author}, Published by {publisher}" for title, author, publisher in sources]) def process_query(query, top_k=5, word_limit=100): """Process a query through the RAG pipeline with proper formatting.""" print(f"\n🔍 Processing query: {query}") retrieved_context, retrieved_sources = retrieve_passages(query, top_k=top_k) sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available." if retrieved_context: context_with_sources = list(zip(retrieved_sources, retrieved_context)) llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit) else: llm_answer_with_rag = "⚠️ No relevant context found." return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources}