import streamlit as st from rag_engine import process_query, load_model from utils import setup_all_auth # Page configuration st.set_page_config(page_title="Indian Spiritual RAG") # Display title st.title("Indian Spiritual Texts Q&A") # Setup all authentication try: setup_all_auth() except Exception as e: st.error(f"Authentication error: {str(e)}") # Preload the model to avoid session state issues try: with st.spinner("Initializing... This may take a minute."): # Force model loading at startup to avoid session state issues load_model() st.success("System initialized successfully!") except Exception as e: st.error(f"Error initializing: {str(e)}") # Query input query = st.text_input("Ask your question:") # Sliders for customization col1, col2 = st.columns(2) with col1: top_k = st.slider("Number of sources:", 3, 10, 5) with col2: word_limit = st.slider("Word limit:", 50, 500, 200) # Process button if st.button("Get Answer"): if query: with st.spinner("Processing..."): try: result = process_query(query, top_k=top_k, word_limit=word_limit) st.subheader("Answer:") st.write(result["answer_with_rag"]) st.subheader("Sources:") for citation in result["citations"].split("\n"): st.write(citation) except Exception as e: st.error(f"Error processing query: {str(e)}") else: st.warning("Please enter a question first.") # Add helpful information st.markdown("---") st.markdown(""" ### About this app This application uses a Retrieval-Augmented Generation (RAG) system to answer questions about Indian spiritual texts. It searches through a database of texts to find relevant passages and generates answers based on those passages. """)