import os import json import numpy as np import faiss import torch import torch.nn as nn from google.cloud import storage from transformers import AutoTokenizer, AutoModel import openai import textwrap import unicodedata import streamlit as st from utils import setup_gcp_auth, setup_openai_auth import gc # Force model to CPU for stability os.environ["CUDA_VISIBLE_DEVICES"] = "" # Local Paths local_embeddings_file = "all_embeddings.npy" local_faiss_index_file = "faiss_index.faiss" local_text_chunks_file = "text_chunks.txt" local_metadata_file = "metadata.jsonl" # ============================================================================= # RESOURCE CACHING # ============================================================================= @st.cache_resource(show_spinner=False) def cached_load_model(): """Cached version of load_model() for embedding model loading.""" try: # Force model to CPU device = torch.device("cpu") # Get embedding model path from secrets try: embedding_model = st.secrets["EMBEDDING_MODEL"] except KeyError: print("❌ Error: Embedding model path not found in secrets") return None, None # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained(embedding_model) model = AutoModel.from_pretrained( embedding_model, torch_dtype=torch.float16 ) # Move model to CPU and set to eval mode model = model.to(device) model.eval() # Disable gradient computation torch.set_grad_enabled(False) print("✅ Model loaded successfully (cached)") return tokenizer, model except Exception as e: print(f"❌ Error loading model: {str(e)}") return None, None @st.cache_resource(show_spinner=False) def cached_load_data_files(): """Cached version of load_data_files() for FAISS index, text chunks, and metadata.""" # Initialize GCP and OpenAI clients bucket = setup_gcp_client() openai_initialized = setup_openai_client() if not bucket or not openai_initialized: print("Failed to initialize required services") return None, None, None # Get GCS paths from secrets - required try: metadata_file_gcs = st.secrets["METADATA_PATH_GCS"] embeddings_file_gcs = st.secrets["EMBEDDINGS_PATH_GCS"] faiss_index_file_gcs = st.secrets["INDICES_PATH_GCS"] text_chunks_file_gcs = st.secrets["CHUNKS_PATH_GCS"] except KeyError as e: print(f"❌ Error: Required GCS path not found in secrets: {e}") return None, None, None # Download necessary files if not already present locally success = True success &= download_file_from_gcs(bucket, faiss_index_file_gcs, local_faiss_index_file) success &= download_file_from_gcs(bucket, text_chunks_file_gcs, local_text_chunks_file) success &= download_file_from_gcs(bucket, metadata_file_gcs, local_metadata_file) if not success: print("Failed to download required files") return None, None, None # Load FAISS index try: faiss_index = faiss.read_index(local_faiss_index_file) except Exception as e: print(f"❌ Error loading FAISS index: {str(e)}") return None, None, None # Load text chunks try: text_chunks = {} # Mapping: ID -> (Title, Author, Text) with open(local_text_chunks_file, "r", encoding="utf-8") as f: for line in f: parts = line.strip().split("\t") if len(parts) == 4: text_chunks[int(parts[0])] = (parts[1], parts[2], parts[3]) except Exception as e: print(f"❌ Error loading text chunks: {str(e)}") return None, None, None # Load metadata try: metadata_dict = {} with open(local_metadata_file, "r", encoding="utf-8") as f: for line in f: item = json.loads(line) metadata_dict[item["Title"]] = item except Exception as e: print(f"❌ Error loading metadata: {str(e)}") return None, None, None print(f"✅ Data loaded successfully (cached): {len(text_chunks)} passages available") return faiss_index, text_chunks, metadata_dict # ============================================================================= # UTILITY FUNCTIONS # ============================================================================= def setup_gcp_client(): try: credentials = setup_gcp_auth() try: bucket_name_gcs = st.secrets["BUCKET_NAME_GCS"] except KeyError: print("❌ Error: GCS bucket name not found in secrets") return None storage_client = storage.Client(credentials=credentials) bucket = storage_client.bucket(bucket_name_gcs) print("✅ GCP client initialized successfully") return bucket except Exception as e: print(f"❌ GCP client initialization error: {str(e)}") return None def setup_openai_client(): try: setup_openai_auth() print("✅ OpenAI client initialized successfully") return True except Exception as e: print(f"❌ OpenAI client initialization error: {str(e)}") return False def download_file_from_gcs(bucket, gcs_path, local_path): """Download a file from GCS to local storage if not already present.""" try: if os.path.exists(local_path): print(f"File already exists locally: {local_path}") return True blob = bucket.blob(gcs_path) blob.download_to_filename(local_path) print(f"✅ Downloaded {gcs_path} → {local_path}") return True except Exception as e: print(f"❌ Error downloading {gcs_path}: {str(e)}") return False def average_pool(last_hidden_states, attention_mask): """Average pooling for sentence embeddings.""" last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0) return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] # In-memory cache for query embeddings query_embedding_cache = {} def get_embedding(text): """Generate embeddings for a text query using the cached model.""" if text in query_embedding_cache: return query_embedding_cache[text] try: tokenizer, model = cached_load_model() if model is None: print("Model is None, returning zero embedding") return np.zeros((1, 384), dtype=np.float32) input_text = f"query: {text}" if len(text) < 512 else f"passage: {text}" inputs = tokenizer( input_text, padding=True, truncation=True, return_tensors="pt", max_length=512, return_attention_mask=True ) with torch.no_grad(): outputs = model(**inputs) embeddings = average_pool(outputs.last_hidden_state, inputs['attention_mask']) embeddings = nn.functional.normalize(embeddings, p=2, dim=1) embeddings = embeddings.detach().cpu().numpy() del outputs, inputs gc.collect() query_embedding_cache[text] = embeddings return embeddings except Exception as e: print(f"❌ Embedding error: {str(e)}") return np.zeros((1, 384), dtype=np.float32) def retrieve_passages(query, faiss_index, text_chunks, metadata_dict, top_k=5, similarity_threshold=0.5): """Retrieve top-k most relevant passages using FAISS and accompanying metadata.""" try: print(f"\n🔍 Retrieving passages for query: {query}") query_embedding = get_embedding(query) distances, indices = faiss_index.search(query_embedding, top_k * 2) print(f"Found {len(distances[0])} potential matches") retrieved_passages = [] retrieved_sources = [] cited_titles = set() for dist, idx in zip(distances[0], indices[0]): print(f"Distance: {dist:.4f}, Index: {idx}") if idx in text_chunks and dist >= similarity_threshold: title_with_txt, author, text = text_chunks[idx] clean_title = title_with_txt.replace(".txt", "") if title_with_txt.endswith(".txt") else title_with_txt clean_title = unicodedata.normalize("NFC", clean_title) if clean_title in cited_titles: continue metadata_entry = metadata_dict.get(clean_title, {}) author = metadata_entry.get("Author", "Unknown") publisher = metadata_entry.get("Publisher", "Unknown") cited_titles.add(clean_title) retrieved_passages.append(text) retrieved_sources.append((clean_title, author, publisher)) if len(retrieved_passages) == top_k: break print(f"Retrieved {len(retrieved_passages)} passages") return retrieved_passages, retrieved_sources except Exception as e: print(f"❌ Error in retrieve_passages: {str(e)}") return [], [] def answer_with_llm(query, context=None, word_limit=100): """Generate an answer using the OpenAI GPT model with formatted citations.""" try: if context: formatted_contexts = [] total_chars = 0 max_context_chars = 4000 for (title, author, publisher), text in context: remaining_space = max(0, max_context_chars - total_chars) excerpt_len = min(150, remaining_space) if excerpt_len > 50: excerpt = text[:excerpt_len].strip() + "..." if len(text) > excerpt_len else text formatted_context = f"[{title} by {author}, Published by {publisher}] {excerpt}" formatted_contexts.append(formatted_context) total_chars += len(formatted_context) if total_chars >= max_context_chars: break formatted_context = "\n".join(formatted_contexts) else: formatted_context = "No relevant information available." system_message = ( "You are an AI specialized in Indian spiritual texts. " "Answer based on context, summarizing ideas rather than quoting verbatim. " "Ensure proper citation and do not include direct excerpts." ) user_message = f""" Context: {formatted_context} Question: {query} """ try: llm_model = st.secrets["LLM_MODEL"] except KeyError: print("❌ Error: LLM model not found in secrets") return "I apologize, but I'm unable to answer at the moment." response = openai.chat.completions.create( model=llm_model, messages=[ {"role": "system", "content": system_message}, {"role": "user", "content": user_message} ], max_tokens=200, temperature=0.7 ) answer = response.choices[0].message.content.strip() words = answer.split() if len(words) > word_limit: answer = " ".join(words[:word_limit]) if not answer.endswith((".", "!", "?")): answer += "." return answer except Exception as e: print(f"❌ LLM API error: {str(e)}") return "I apologize, but I'm unable to answer at the moment." def format_citations(sources): """Format citations so that each appears on a new line, ending with proper punctuation.""" formatted_citations = [] for title, author, publisher in sources: if publisher.endswith(('.', '!', '?')): formatted_citations.append(f"📚 {title} by {author}, Published by {publisher}") else: formatted_citations.append(f"📚 {title} by {author}, Published by {publisher}.") return "\n".join(formatted_citations) # ============================================================================= # DATA CACHING FOR QUERY RESULTS # ============================================================================= @st.cache_data(ttl=3600, show_spinner=False) def cached_process_query(query, top_k=5, word_limit=100): """Cached query processing to avoid redundant computation for repeated queries.""" print(f"\n🔍 Processing query (cached): {query}") faiss_index, text_chunks, metadata_dict = cached_load_data_files() if faiss_index is None or text_chunks is None or metadata_dict is None: return { "query": query, "answer_with_rag": "⚠️ System error: Data files not loaded properly.", "citations": "No citations available." } retrieved_context, retrieved_sources = retrieve_passages( query, faiss_index, text_chunks, metadata_dict, top_k=top_k ) sources = format_citations(retrieved_sources) if retrieved_sources else "No citation available." if retrieved_context: context_with_sources = list(zip(retrieved_sources, retrieved_context)) llm_answer_with_rag = answer_with_llm(query, context_with_sources, word_limit=word_limit) else: llm_answer_with_rag = "⚠️ No relevant context found." return {"query": query, "answer_with_rag": llm_answer_with_rag, "citations": sources} def process_query(query, top_k=5, word_limit=100): """Process a query through the RAG pipeline with proper formatting. This function wraps the cached query processing. """ return cached_process_query(query, top_k, word_limit) # Alias for backward compatibility. load_model = cached_load_model