Spaces:
Runtime error
Runtime error
Upload 4 files
Browse files- Dockerfile +48 -0
- app.py +280 -0
- requirements.txt +1 -0
- startup.sh +65 -0
Dockerfile
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 1. Base Image
|
2 |
+
FROM python:3.11-slim
|
3 |
+
|
4 |
+
# Set the volume for Ollama data
|
5 |
+
# This is where Ollama will store its models and data
|
6 |
+
# VOLUME /root/.ollama
|
7 |
+
|
8 |
+
# 2. Set Environment Variables
|
9 |
+
ENV PYTHONUNBUFFERED=1
|
10 |
+
ENV GRADIO_SERVER_NAME="0.0.0.0"
|
11 |
+
ENV OLLAMA_HOST="0.0.0.0:11434"
|
12 |
+
|
13 |
+
# 3. Set Working Directory
|
14 |
+
WORKDIR /app
|
15 |
+
|
16 |
+
# 4. Install System Dependencies
|
17 |
+
RUN apt-get update && \
|
18 |
+
apt-get install -y --no-install-recommends \
|
19 |
+
curl \
|
20 |
+
ca-certificates \
|
21 |
+
&& rm -rf /var/lib/apt/lists/*
|
22 |
+
|
23 |
+
# 5. Install Ollama
|
24 |
+
RUN curl -fsSL https://ollama.com/install.sh | sh
|
25 |
+
|
26 |
+
# 6. Copy Application Requirements
|
27 |
+
COPY requirements.txt .
|
28 |
+
|
29 |
+
# 7. Install Python Dependencies
|
30 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
31 |
+
|
32 |
+
# 8. Copy Your Application Code
|
33 |
+
COPY app.py .
|
34 |
+
COPY startup.sh .
|
35 |
+
|
36 |
+
# 9. Define Models to Pull (as an Argument with a default list)
|
37 |
+
ARG OLLAMA_PULL_MODELS="qwen3:4b qwen3:1.7b qwen3:0.6b" # Default models if not overridden
|
38 |
+
|
39 |
+
# Make the ARG available as an ENVironment variable for startup.sh
|
40 |
+
ENV OLLAMA_PULL_MODELS=${OLLAMA_PULL_MODELS}
|
41 |
+
|
42 |
+
# 10. Expose Ports
|
43 |
+
EXPOSE 11434
|
44 |
+
EXPOSE 7860
|
45 |
+
|
46 |
+
# 11. Entrypoint/Startup Script - NOW USING EXEC FORM FOR THE SCRIPT
|
47 |
+
# CMD ["./startup.sh"] # <-- CHANGE TO THIS
|
48 |
+
ENTRYPOINT ["./startup.sh"]
|
app.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import subprocess
|
3 |
+
import time
|
4 |
+
|
5 |
+
# import os # Not strictly needed in *this* version of app.py as no env vars are read
|
6 |
+
|
7 |
+
# --- Ollama Helper Functions ---
|
8 |
+
|
9 |
+
|
10 |
+
def check_ollama_running():
|
11 |
+
"""Checks if the Ollama service is accessible."""
|
12 |
+
try:
|
13 |
+
subprocess.run(["ollama", "ps"], check=True, capture_output=True, timeout=5)
|
14 |
+
return True
|
15 |
+
except (subprocess.CalledProcessError, FileNotFoundError, subprocess.TimeoutExpired):
|
16 |
+
return False
|
17 |
+
|
18 |
+
|
19 |
+
def get_ollama_models():
|
20 |
+
"""Gets a list of locally available Ollama models."""
|
21 |
+
# Removed the 'if not check_ollama_running(): return []'
|
22 |
+
# because it's called after AVAILABLE_MODELS is determined,
|
23 |
+
# and check_ollama_running is implicitly done by the initial AVAILABLE_MODELS load.
|
24 |
+
# However, in a container, Ollama should be running.
|
25 |
+
try:
|
26 |
+
result = subprocess.run(["ollama", "list"], check=True, capture_output=True, text=True, timeout=10)
|
27 |
+
models = []
|
28 |
+
lines = result.stdout.strip().split("\n")
|
29 |
+
if len(lines) > 1:
|
30 |
+
for line in lines[1:]:
|
31 |
+
parts = line.split()
|
32 |
+
if parts:
|
33 |
+
models.append(parts[0])
|
34 |
+
# Ensure models are sorted and unique for consistent dropdown
|
35 |
+
return sorted(list(set(models)))
|
36 |
+
except (subprocess.CalledProcessError, FileNotFoundError, subprocess.TimeoutExpired) as e:
|
37 |
+
print(f"Error in get_ollama_models: {e}") # Added a print for debugging
|
38 |
+
return []
|
39 |
+
|
40 |
+
|
41 |
+
# --- Core Logic ---
|
42 |
+
|
43 |
+
# Typing speed simulation
|
44 |
+
CHAR_DELAY = 0.02 # Adjust for desired speed (0.01 is fast, 0.05 is slower)
|
45 |
+
|
46 |
+
|
47 |
+
def reasoning_ollama_stream(model_name, prompt, mode): # Renamed prompt_text back to prompt
|
48 |
+
"""
|
49 |
+
Streams response from an Ollama model with simulated typing speed.
|
50 |
+
"""
|
51 |
+
if not model_name:
|
52 |
+
yield "Error: No model selected. Please choose a model."
|
53 |
+
return
|
54 |
+
if not prompt.strip(): # Using original 'prompt' variable name
|
55 |
+
yield "Error: Prompt cannot be empty."
|
56 |
+
return
|
57 |
+
|
58 |
+
# This check is good for robustness, even in Docker.
|
59 |
+
if not check_ollama_running():
|
60 |
+
yield "Error: Ollama service does not seem to be running or accessible. Please start Ollama."
|
61 |
+
return
|
62 |
+
|
63 |
+
# This is a runtime check. The Dockerfile aims to pull models, but this confirms.
|
64 |
+
available_models_runtime = get_ollama_models()
|
65 |
+
if model_name not in available_models_runtime:
|
66 |
+
yield f"Error: Model '{model_name}' selected, but not found by Ollama at runtime. Available: {available_models_runtime}. Please ensure it was pulled."
|
67 |
+
return
|
68 |
+
|
69 |
+
# Using original 'prompt' and 'mode'
|
70 |
+
prompt_with_mode = f"{prompt.strip()} /{mode}"
|
71 |
+
command = ["ollama", "run", model_name]
|
72 |
+
|
73 |
+
displayed_response = ""
|
74 |
+
try:
|
75 |
+
process = subprocess.Popen(
|
76 |
+
command,
|
77 |
+
stdin=subprocess.PIPE,
|
78 |
+
stdout=subprocess.PIPE,
|
79 |
+
stderr=subprocess.PIPE,
|
80 |
+
text=True,
|
81 |
+
bufsize=1,
|
82 |
+
universal_newlines=True,
|
83 |
+
)
|
84 |
+
|
85 |
+
process.stdin.write(prompt_with_mode + "\n")
|
86 |
+
process.stdin.close()
|
87 |
+
|
88 |
+
for line_chunk in iter(process.stdout.readline, ""):
|
89 |
+
if not line_chunk and process.poll() is not None: # Check if process ended
|
90 |
+
break
|
91 |
+
for char in line_chunk:
|
92 |
+
displayed_response += char
|
93 |
+
yield displayed_response
|
94 |
+
if char.strip(): # Only sleep for non-whitespace characters
|
95 |
+
time.sleep(CHAR_DELAY)
|
96 |
+
|
97 |
+
process.stdout.close()
|
98 |
+
return_code = process.wait(timeout=10) # Added timeout to wait
|
99 |
+
|
100 |
+
if return_code != 0:
|
101 |
+
error_output = process.stderr.read()
|
102 |
+
error_message = f"\n\n--- Ollama Error (code {return_code}) ---\n{error_output.strip()}"
|
103 |
+
if displayed_response and not displayed_response.endswith(error_message):
|
104 |
+
displayed_response += error_message
|
105 |
+
elif not displayed_response:
|
106 |
+
displayed_response = error_message.strip()
|
107 |
+
yield displayed_response
|
108 |
+
return
|
109 |
+
|
110 |
+
if not displayed_response.strip() and return_code == 0:
|
111 |
+
yield "Model returned an empty response."
|
112 |
+
elif displayed_response:
|
113 |
+
yield displayed_response
|
114 |
+
|
115 |
+
except FileNotFoundError:
|
116 |
+
yield "Error: 'ollama' command not found. Please ensure Ollama is installed and in your PATH (or Dockerfile is correct)."
|
117 |
+
except subprocess.TimeoutExpired: # Catch timeout from process.wait()
|
118 |
+
yield "Error: Ollama process timed out while waiting for completion."
|
119 |
+
if displayed_response:
|
120 |
+
yield displayed_response
|
121 |
+
except Exception as e:
|
122 |
+
yield f"An unexpected error occurred: {str(e)}"
|
123 |
+
if displayed_response:
|
124 |
+
yield displayed_response
|
125 |
+
|
126 |
+
|
127 |
+
# --- Gradio UI ---
|
128 |
+
|
129 |
+
# This runs once when the script starts.
|
130 |
+
# In Docker, this will query the Ollama instance inside the container AFTER models are pulled by CMD.
|
131 |
+
AVAILABLE_MODELS = get_ollama_models()
|
132 |
+
QWEN_MODELS = [m for m in AVAILABLE_MODELS if "qwen" in m.lower()]
|
133 |
+
INITIAL_MODEL = None
|
134 |
+
|
135 |
+
# Prioritize qwen3:4b if available - This logic is from your original app.py
|
136 |
+
if "qwen3:4b" in AVAILABLE_MODELS:
|
137 |
+
INITIAL_MODEL = "qwen3:4b"
|
138 |
+
elif QWEN_MODELS:
|
139 |
+
INITIAL_MODEL = QWEN_MODELS[0]
|
140 |
+
elif AVAILABLE_MODELS:
|
141 |
+
INITIAL_MODEL = AVAILABLE_MODELS[0]
|
142 |
+
# If no models, INITIAL_MODEL remains None, and dropdown will show "No models found..."
|
143 |
+
|
144 |
+
with gr.Blocks(title="Qwen3 x Ollama", theme=gr.themes.Soft()) as demo:
|
145 |
+
gr.HTML(
|
146 |
+
"""
|
147 |
+
<h1 style='text-align: center'>
|
148 |
+
Qwen3 Reasoning with Ollama
|
149 |
+
</h1>
|
150 |
+
"""
|
151 |
+
)
|
152 |
+
gr.HTML(
|
153 |
+
"""
|
154 |
+
<h3 style='text-align: center'>
|
155 |
+
<a href='https://opencv.org/university/' target='_blank'>OpenCV Courses</a> | <a href='https://github.com/OpenCV-University' target='_blank'>Github</a>
|
156 |
+
</h3>
|
157 |
+
"""
|
158 |
+
)
|
159 |
+
gr.Markdown(
|
160 |
+
"""
|
161 |
+
- Interact with a Qwen3 model hosted on Ollama.
|
162 |
+
- Switch between `/think` and `/no_think` modes to explore the thinking process.
|
163 |
+
- The response will stream with a simulated typing effect.
|
164 |
+
"""
|
165 |
+
)
|
166 |
+
|
167 |
+
with gr.Row():
|
168 |
+
with gr.Column(scale=1):
|
169 |
+
model_selector = gr.Dropdown(
|
170 |
+
label="Select Model",
|
171 |
+
choices=AVAILABLE_MODELS if AVAILABLE_MODELS else ["No models found - check Ollama setup"],
|
172 |
+
value=INITIAL_MODEL,
|
173 |
+
interactive=True,
|
174 |
+
)
|
175 |
+
prompt_input = gr.Textbox(
|
176 |
+
label="Enter your prompt",
|
177 |
+
placeholder="e.g., Explain quantum entanglement in simple terms.",
|
178 |
+
lines=5,
|
179 |
+
elem_id="prompt-input",
|
180 |
+
)
|
181 |
+
mode_radio = gr.Radio(
|
182 |
+
["think", "no_think"], # Kept original modes from your app.py
|
183 |
+
label="Reasoning Mode",
|
184 |
+
value="think",
|
185 |
+
info="`/think` encourages step-by-step reasoning. `/no_think` aims for a direct answer.",
|
186 |
+
)
|
187 |
+
with gr.Row():
|
188 |
+
submit_button = gr.Button("Generate Response", variant="primary")
|
189 |
+
clear_button = gr.ClearButton()
|
190 |
+
|
191 |
+
with gr.Column(scale=2):
|
192 |
+
status_output = gr.Textbox(
|
193 |
+
label="Status",
|
194 |
+
interactive=False,
|
195 |
+
lines=1,
|
196 |
+
placeholder="Awaiting submission...",
|
197 |
+
elem_id="status-output",
|
198 |
+
)
|
199 |
+
response_output = gr.Textbox( # Kept as gr.Textbox as requested
|
200 |
+
label="Model Response", lines=20, interactive=False, show_copy_button=True, elem_id="response-output"
|
201 |
+
)
|
202 |
+
|
203 |
+
def handle_submit_wrapper(model, prompt, mode):
|
204 |
+
yield {status_output: "Processing... Preparing to stream response.", response_output: ""}
|
205 |
+
|
206 |
+
final_chunk = ""
|
207 |
+
# Using original variable names 'prompt' and 'mode' for reasoning_ollama_stream
|
208 |
+
for chunk in reasoning_ollama_stream(model, prompt, mode):
|
209 |
+
final_chunk = chunk
|
210 |
+
yield {status_output: "Streaming response...", response_output: chunk}
|
211 |
+
|
212 |
+
if "Error:" in final_chunk or "--- Ollama Error ---" in final_chunk:
|
213 |
+
yield {status_output: "Completed with issues.", response_output: final_chunk}
|
214 |
+
elif "Model returned an empty response." in final_chunk:
|
215 |
+
yield {status_output: "Model returned an empty response.", response_output: final_chunk}
|
216 |
+
elif not final_chunk.strip() and ("Error:" not in final_chunk and "--- Ollama Error ---" not in final_chunk):
|
217 |
+
yield {status_output: "Completed, but no substantive output received.", response_output: ""}
|
218 |
+
else:
|
219 |
+
yield {status_output: "Response generated successfully!", response_output: final_chunk}
|
220 |
+
|
221 |
+
submit_button.click(
|
222 |
+
fn=handle_submit_wrapper,
|
223 |
+
inputs=[model_selector, prompt_input, mode_radio],
|
224 |
+
outputs=[status_output, response_output],
|
225 |
+
)
|
226 |
+
clear_button.add([prompt_input, response_output, status_output])
|
227 |
+
|
228 |
+
# Example model determination logic from your original app.py
|
229 |
+
# Note: This might select a model not actually available if AVAILABLE_MODELS is empty
|
230 |
+
# and the fallback "qwen3:4b" is used.
|
231 |
+
# A safer approach is to ensure example_model is from AVAILABLE_MODELS if possible.
|
232 |
+
example_model_for_ui = INITIAL_MODEL
|
233 |
+
if not example_model_for_ui and AVAILABLE_MODELS:
|
234 |
+
example_model_for_ui = AVAILABLE_MODELS[0]
|
235 |
+
elif not example_model_for_ui: # Fallback if no models and INITIAL_MODEL is None
|
236 |
+
example_model_for_ui = "qwen3:4b" # Default example model
|
237 |
+
|
238 |
+
gr.Examples(
|
239 |
+
examples=[
|
240 |
+
[example_model_for_ui, "What are the main pros and cons of using nuclear energy?", "think"],
|
241 |
+
# Fallback for the second example if qwen3:4b isn't a primary choice
|
242 |
+
[
|
243 |
+
(
|
244 |
+
example_model_for_ui
|
245 |
+
if example_model_for_ui != "qwen3:4b"
|
246 |
+
else (INITIAL_MODEL if INITIAL_MODEL and INITIAL_MODEL != "qwen3:4b" else "qwen3:1.7b")
|
247 |
+
),
|
248 |
+
"Write a short poem about a rainy day.",
|
249 |
+
"no_think",
|
250 |
+
],
|
251 |
+
[example_model_for_ui, "Plan a 3-day trip to Paris, focusing on historical sites.", "think"],
|
252 |
+
],
|
253 |
+
inputs=[model_selector, prompt_input, mode_radio],
|
254 |
+
outputs=[status_output, response_output],
|
255 |
+
fn=handle_submit_wrapper,
|
256 |
+
cache_examples=False, # Cache examples can be True if inputs are static and fn is pure
|
257 |
+
)
|
258 |
+
gr.HTML(
|
259 |
+
"""
|
260 |
+
<h3 style='text-align: center'>
|
261 |
+
Developed with ❤️ by OpenCV
|
262 |
+
</h3>
|
263 |
+
"""
|
264 |
+
)
|
265 |
+
|
266 |
+
if __name__ == "__main__":
|
267 |
+
print("--- Gradio App Starting ---") # Simplified print
|
268 |
+
print(f"Attempting to fetch Ollama models (initial load)... Result: {AVAILABLE_MODELS}")
|
269 |
+
print(f"Initial model for UI (if any): {INITIAL_MODEL}")
|
270 |
+
print(f"Gradio version: {gr.__version__}")
|
271 |
+
print(f"---------------------------")
|
272 |
+
|
273 |
+
# For local Docker testing, server_name="0.0.0.0" is important.
|
274 |
+
# For Hugging Face Spaces, demo.launch() is usually enough as it handles proxying.
|
275 |
+
demo.queue().launch(
|
276 |
+
server_name="0.0.0.0",
|
277 |
+
server_port=7860,
|
278 |
+
share=False, # Set to True if you need a public link for local testing (requires internet)
|
279 |
+
# share=os.getenv("GRADIO_SHARE", "False").lower() == "true" # If using env var for share
|
280 |
+
)
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
gradio==5.31.0
|
startup.sh
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# startup.sh
|
3 |
+
|
4 |
+
set -e # Exit immediately if a command exits with a non-zero status.
|
5 |
+
|
6 |
+
echo "Starting Ollama server in the background..."
|
7 |
+
ollama serve > /tmp/ollama.log 2>&1 &
|
8 |
+
OLLAMA_PID=$! # Get PID of the backgrounded ollama serve
|
9 |
+
|
10 |
+
echo "Waiting for Ollama to be ready (http://127.0.0.1:11434)..."
|
11 |
+
timeout_seconds=120
|
12 |
+
start_time=$(date +%s)
|
13 |
+
while ! curl -s --fail -o /dev/null http://127.0.0.1:11434; do
|
14 |
+
current_time=$(date +%s)
|
15 |
+
elapsed_time=$((current_time - start_time))
|
16 |
+
if [ "$elapsed_time" -ge "$timeout_seconds" ]; then
|
17 |
+
echo "Ollama failed to start within $timeout_seconds seconds. Check /tmp/ollama.log."
|
18 |
+
cat /tmp/ollama.log
|
19 |
+
exit 1
|
20 |
+
fi
|
21 |
+
echo -n "."
|
22 |
+
sleep 2
|
23 |
+
done
|
24 |
+
echo ""
|
25 |
+
echo "Ollama server started successfully."
|
26 |
+
|
27 |
+
# OLLAMA_PULL_MODELS will be passed as an environment variable from Dockerfile
|
28 |
+
echo "Models to pull from ENV: ${OLLAMA_PULL_MODELS}"
|
29 |
+
|
30 |
+
for model_name in ${OLLAMA_PULL_MODELS}; do
|
31 |
+
echo "Pulling model: ${model_name} (this may take several minutes)..."
|
32 |
+
ollama pull "${model_name}"
|
33 |
+
if [ $? -eq 0 ]; then
|
34 |
+
echo "Model ${model_name} pulled successfully."
|
35 |
+
else
|
36 |
+
echo "Failed to pull model ${model_name}. Check logs or model name."
|
37 |
+
fi
|
38 |
+
done
|
39 |
+
|
40 |
+
# Define a function to clean up (stop Ollama) when the script exits
|
41 |
+
cleanup() {
|
42 |
+
echo "Caught signal, shutting down Ollama (PID: $OLLAMA_PID)..."
|
43 |
+
if kill -0 $OLLAMA_PID > /dev/null 2>&1; then # Check if process exists
|
44 |
+
kill $OLLAMA_PID
|
45 |
+
wait $OLLAMA_PID # Wait for Ollama to actually terminate
|
46 |
+
echo "Ollama shut down."
|
47 |
+
else
|
48 |
+
echo "Ollama process (PID: $OLLAMA_PID) not found or already stopped."
|
49 |
+
fi
|
50 |
+
}
|
51 |
+
|
52 |
+
# Trap signals to call the cleanup function
|
53 |
+
# SIGINT is Ctrl+C, SIGTERM is `docker stop`
|
54 |
+
trap cleanup SIGINT SIGTERM
|
55 |
+
|
56 |
+
echo "Starting Gradio application (python app.py)..."
|
57 |
+
# Run python app.py in the foreground. It will now be PID 1 (or close to it)
|
58 |
+
# relative to this script, and signals will be handled by this script.
|
59 |
+
python app.py &
|
60 |
+
PYTHON_APP_PID=$!
|
61 |
+
|
62 |
+
wait $PYTHON_APP_PID # Wait for the python app to exit
|
63 |
+
# After python app exits, perform cleanup (this will also be called by trap)
|
64 |
+
cleanup
|
65 |
+
echo "Gradio application exited."
|