Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
from PIL import Image | |
import torch | |
from torchvision import transforms | |
import re | |
# MODELES | |
INGREDIENT_MODEL_ID = "stchakman/Fridge_Items_Model" | |
RECIPE_MODEL_ID = "flax-community/t5-recipe-generation" | |
# PIPELINES | |
ingredient_classifier = pipeline( | |
"image-classification", | |
model=INGREDIENT_MODEL_ID, | |
device=0 if torch.cuda.is_available() else -1, | |
top_k=5 | |
) | |
recipe_generator = pipeline( | |
"text2text-generation", | |
model=RECIPE_MODEL_ID, | |
device=0 if torch.cuda.is_available() else -1, | |
) | |
# AUGMENTATION | |
augment = transforms.Compose([ | |
transforms.RandomHorizontalFlip(p=0.5), | |
transforms.RandomRotation(10), | |
transforms.ColorJitter(brightness=0.2, contrast=0.2), | |
]) | |
def parse_recipe_text(raw: str): | |
""" | |
Parse le texte brut retourne par le modele en JSON { ingredients: [...], steps: [...] }. | |
""" | |
raw = raw.replace("ingredients: ingredients:", "ingredients:") | |
# On cherche la section ingredients et directions | |
ing_match = re.search(r"ingredients:\s*(.*?)\s*directions:", raw, re.IGNORECASE | re.DOTALL) | |
dir_match = re.search(r"directions:\s*(.+)$", raw, re.IGNORECASE | re.DOTALL) | |
# ingredients | |
ingredients = [] | |
if ing_match: | |
ing_str = ing_match.group(1).strip() | |
parts = re.findall(r"(\d+\s+[^\d,\.]+(?: [^\d,\.]+)*)", ing_str) | |
if parts: | |
ingredients = [p.strip() for p in parts] | |
else: | |
ingredients = [i.strip() for i in ing_str.split(",") if i.strip()] | |
# etapes | |
steps = [] | |
if dir_match: | |
steps_str = dir_match.group(1).strip() | |
for s in re.split(r"\.\s*", steps_str): | |
s = s.strip() | |
if s: | |
steps.append(s.endswith(".") and s or s + ".") | |
return {"ingredients": ingredients, "steps": steps} | |
def generate_recipe_json(image: Image.Image): | |
# Aug | |
image_aug = augment(image) | |
results = ingredient_classifier(image_aug) | |
ingredients = [res["label"] for res in results] | |
ingredient_str = ", ".join(ingredients) | |
prompt = f"Ingredients: {ingredient_str}. Recipe:" | |
raw = recipe_generator(prompt, max_new_tokens=256, do_sample=True)[0]["generated_text"] | |
parsed = parse_recipe_text(raw) | |
return { | |
"detected_ingredients": ingredients, | |
"recipe_text": raw, | |
"ingredients_parsed": parsed["ingredients"], | |
"steps": parsed["steps"] | |
} | |
interface = gr.Interface( | |
fn=generate_recipe_json, | |
inputs=gr.Image(type="pil", label="π· Image de vos ingredients"), | |
outputs="json", | |
title="π§βπ³ Generateur de Recettes (JSON) π§βπ³", | |
description="Depose une image d'ingredients, recupere directement un JSON structure avec ingredients et etapes.", | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
interface.launch(share=True) | |