Spaces:
Sleeping
Sleeping
FIX
Browse files
app.py
CHANGED
@@ -3,23 +3,23 @@ from transformers import pipeline
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
from torchvision import transforms
|
6 |
-
import re
|
7 |
|
8 |
# MODELES
|
9 |
INGREDIENT_MODEL_ID = "stchakman/Fridge_Items_Model"
|
10 |
-
RECIPE_MODEL_ID
|
11 |
|
12 |
# PIPELINES
|
13 |
ingredient_classifier = pipeline(
|
14 |
"image-classification",
|
15 |
model=INGREDIENT_MODEL_ID,
|
16 |
device=0 if torch.cuda.is_available() else -1,
|
17 |
-
top_k=
|
18 |
)
|
|
|
19 |
recipe_generator = pipeline(
|
20 |
"text2text-generation",
|
21 |
model=RECIPE_MODEL_ID,
|
22 |
-
device=0 if torch.cuda.is_available() else -1
|
23 |
)
|
24 |
|
25 |
# AUGMENTATION
|
@@ -29,59 +29,30 @@ augment = transforms.Compose([
|
|
29 |
transforms.ColorJitter(brightness=0.2, contrast=0.2),
|
30 |
])
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
"""
|
36 |
-
raw = raw.replace("ingredients: ingredients:", "ingredients:")
|
37 |
-
# On cherche la section ingredients et directions
|
38 |
-
ing_match = re.search(r"ingredients:\s*(.*?)\s*directions:", raw, re.IGNORECASE | re.DOTALL)
|
39 |
-
dir_match = re.search(r"directions:\s*(.+)$", raw, re.IGNORECASE | re.DOTALL)
|
40 |
-
|
41 |
-
# ingredients
|
42 |
-
ingredients = []
|
43 |
-
if ing_match:
|
44 |
-
ing_str = ing_match.group(1).strip()
|
45 |
-
parts = re.findall(r"(\d+\s+[^\d,\.]+(?: [^\d,\.]+)*)", ing_str)
|
46 |
-
if parts:
|
47 |
-
ingredients = [p.strip() for p in parts]
|
48 |
-
else:
|
49 |
-
ingredients = [i.strip() for i in ing_str.split(",") if i.strip()]
|
50 |
-
|
51 |
-
# etapes
|
52 |
-
steps = []
|
53 |
-
if dir_match:
|
54 |
-
steps_str = dir_match.group(1).strip()
|
55 |
-
for s in re.split(r"\.\s*", steps_str):
|
56 |
-
s = s.strip()
|
57 |
-
if s:
|
58 |
-
steps.append(s.endswith(".") and s or s + ".")
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
def generate_recipe_json(image: Image.Image):
|
63 |
-
# Aug
|
64 |
image_aug = augment(image)
|
|
|
|
|
65 |
results = ingredient_classifier(image_aug)
|
66 |
ingredients = [res["label"] for res in results]
|
67 |
ingredient_str = ", ".join(ingredients)
|
68 |
-
prompt = f"Ingredients: {ingredient_str}. Recipe:"
|
69 |
-
raw = recipe_generator(prompt, max_new_tokens=256, do_sample=True)[0]["generated_text"]
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
"ingredients_parsed": parsed["ingredients"],
|
76 |
-
"steps": parsed["steps"]
|
77 |
-
}
|
78 |
|
|
|
79 |
interface = gr.Interface(
|
80 |
-
fn=
|
81 |
-
inputs=gr.Image(type="pil", label="📷 Image de vos
|
82 |
-
outputs=
|
83 |
-
title="
|
84 |
-
description="
|
85 |
allow_flagging="never"
|
86 |
)
|
87 |
|
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
from torchvision import transforms
|
|
|
6 |
|
7 |
# MODELES
|
8 |
INGREDIENT_MODEL_ID = "stchakman/Fridge_Items_Model"
|
9 |
+
RECIPE_MODEL_ID = "flax-community/t5-recipe-generation"
|
10 |
|
11 |
# PIPELINES
|
12 |
ingredient_classifier = pipeline(
|
13 |
"image-classification",
|
14 |
model=INGREDIENT_MODEL_ID,
|
15 |
device=0 if torch.cuda.is_available() else -1,
|
16 |
+
top_k=4
|
17 |
)
|
18 |
+
|
19 |
recipe_generator = pipeline(
|
20 |
"text2text-generation",
|
21 |
model=RECIPE_MODEL_ID,
|
22 |
+
device=0 if torch.cuda.is_available() else -1
|
23 |
)
|
24 |
|
25 |
# AUGMENTATION
|
|
|
29 |
transforms.ColorJitter(brightness=0.2, contrast=0.2),
|
30 |
])
|
31 |
|
32 |
+
# FONCTION PRINCIPALE
|
33 |
+
def generate_recipe(image: Image.Image):
|
34 |
+
yield "🔄 Traitement de l'image... Veuillez patienter."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# Augmentation
|
|
|
|
|
|
|
37 |
image_aug = augment(image)
|
38 |
+
|
39 |
+
# Classification
|
40 |
results = ingredient_classifier(image_aug)
|
41 |
ingredients = [res["label"] for res in results]
|
42 |
ingredient_str = ", ".join(ingredients)
|
|
|
|
|
43 |
|
44 |
+
yield f"🥕 Ingrédients détectés : {ingredient_str}\n\n🍳 Génération de la recette..."
|
45 |
+
prompt = f"Ingredients: {ingredient_str}. Recipe:"
|
46 |
+
recipe = recipe_generator(prompt, max_new_tokens=256, do_sample=True)[0]["generated_text"]
|
47 |
+
yield f"### 🥕 Ingrédients détectés :\n{ingredient_str}\n\n### 🍽️ Recette générée :\n{recipe}"
|
|
|
|
|
|
|
48 |
|
49 |
+
# INTERFACE
|
50 |
interface = gr.Interface(
|
51 |
+
fn=generate_recipe,
|
52 |
+
inputs=gr.Image(type="pil", label="📷 Image de vos ingrédients"),
|
53 |
+
outputs=gr.Markdown(),
|
54 |
+
title="🥕 Générateur de Recettes 🧑🍳",
|
55 |
+
description="Dépose une image d'ingrédients pour obtenir une recette automatiquement générée à partir d'un modèle IA.",
|
56 |
allow_flagging="never"
|
57 |
)
|
58 |
|