Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
from audiocraft.models import MusicGen
|
| 2 |
import streamlit as st
|
|
|
|
| 3 |
import torch
|
| 4 |
import torchaudio
|
| 5 |
from io import BytesIO
|
|
@@ -16,9 +17,7 @@ def generate_music_tensors(description, duration: int):
|
|
| 16 |
|
| 17 |
model.set_generation_params(
|
| 18 |
use_sampling=True,
|
| 19 |
-
top_k=
|
| 20 |
-
top_p=0.85,
|
| 21 |
-
temperature=0.8,
|
| 22 |
duration=duration
|
| 23 |
)
|
| 24 |
|
|
@@ -31,15 +30,16 @@ def generate_music_tensors(description, duration: int):
|
|
| 31 |
|
| 32 |
def save_audio_to_bytes(samples: torch.Tensor):
|
| 33 |
sample_rate = 32000
|
| 34 |
-
assert samples.dim() ==
|
| 35 |
-
samples = samples[0] # Take the first batch item
|
| 36 |
samples = samples.detach().cpu()
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
|
| 44 |
st.set_page_config(
|
| 45 |
page_icon=":musical_note:",
|
|
@@ -50,29 +50,32 @@ def main():
|
|
| 50 |
st.title("Your Music")
|
| 51 |
|
| 52 |
with st.expander("See Explanation"):
|
| 53 |
-
st.write("
|
| 54 |
|
| 55 |
text_area = st.text_area("Enter description")
|
| 56 |
-
time_slider = st.slider("Select time duration (seconds)", 2, 20,
|
| 57 |
|
| 58 |
if text_area and time_slider:
|
| 59 |
-
st.json(
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
st.write("We will
|
|
|
|
| 65 |
st.subheader("Generated Music")
|
| 66 |
music_tensors = generate_music_tensors(text_area, time_slider)
|
| 67 |
-
|
| 68 |
-
#
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
# Play
|
| 72 |
-
st.audio(
|
|
|
|
|
|
|
| 73 |
st.download_button(
|
| 74 |
label="Download Audio",
|
| 75 |
-
data=
|
| 76 |
file_name="generated_music.wav",
|
| 77 |
mime="audio/wav"
|
| 78 |
)
|
|
|
|
| 1 |
from audiocraft.models import MusicGen
|
| 2 |
import streamlit as st
|
| 3 |
+
import os
|
| 4 |
import torch
|
| 5 |
import torchaudio
|
| 6 |
from io import BytesIO
|
|
|
|
| 17 |
|
| 18 |
model.set_generation_params(
|
| 19 |
use_sampling=True,
|
| 20 |
+
top_k=250,
|
|
|
|
|
|
|
| 21 |
duration=duration
|
| 22 |
)
|
| 23 |
|
|
|
|
| 30 |
|
| 31 |
def save_audio_to_bytes(samples: torch.Tensor):
|
| 32 |
sample_rate = 32000
|
| 33 |
+
assert samples.dim() == 2 or samples.dim() == 3
|
|
|
|
| 34 |
samples = samples.detach().cpu()
|
| 35 |
|
| 36 |
+
if samples.dim() == 2:
|
| 37 |
+
samples = samples[None, ...] # Add batch dimension if missing
|
| 38 |
+
|
| 39 |
+
audio_buffer = BytesIO()
|
| 40 |
+
torchaudio.save(audio_buffer, samples[0], sample_rate=sample_rate, format="wav")
|
| 41 |
+
audio_buffer.seek(0) # Move to the start of the buffer
|
| 42 |
+
return audio_buffer
|
| 43 |
|
| 44 |
st.set_page_config(
|
| 45 |
page_icon=":musical_note:",
|
|
|
|
| 50 |
st.title("Your Music")
|
| 51 |
|
| 52 |
with st.expander("See Explanation"):
|
| 53 |
+
st.write("This app uses Meta's Audiocraft Music Gen model to generate audio based on your description.")
|
| 54 |
|
| 55 |
text_area = st.text_area("Enter description")
|
| 56 |
+
time_slider = st.slider("Select time duration (seconds)", 2, 20, 5)
|
| 57 |
|
| 58 |
if text_area and time_slider:
|
| 59 |
+
st.json(
|
| 60 |
+
{
|
| 61 |
+
"Description": text_area,
|
| 62 |
+
"Selected duration": time_slider
|
| 63 |
+
}
|
| 64 |
+
st.write("We will back with your music....please enjoy doing the rest of your tasks while we come back in some time :)")
|
| 65 |
+
)
|
| 66 |
st.subheader("Generated Music")
|
| 67 |
music_tensors = generate_music_tensors(text_area, time_slider)
|
| 68 |
+
|
| 69 |
+
# Convert audio to bytes for playback and download
|
| 70 |
+
audio_buffer = save_audio_to_bytes(music_tensors)
|
| 71 |
+
|
| 72 |
+
# Play audio
|
| 73 |
+
st.audio(audio_buffer, format="audio/wav")
|
| 74 |
+
|
| 75 |
+
# Download button for audio
|
| 76 |
st.download_button(
|
| 77 |
label="Download Audio",
|
| 78 |
+
data=audio_buffer,
|
| 79 |
file_name="generated_music.wav",
|
| 80 |
mime="audio/wav"
|
| 81 |
)
|