Spaces:
Sleeping
Sleeping
File size: 4,828 Bytes
0dff71c 5df6164 0dff71c 5df6164 0dff71c 8531bb5 0dff71c 8531bb5 0dff71c 15e8427 5df6164 8531bb5 0dff71c 8531bb5 5df6164 8531bb5 0dff71c 2651156 8531bb5 2651156 0dff71c 2651156 0dff71c 2651156 0dff71c 2651156 0dff71c 5df6164 8531bb5 41d137b 8531bb5 2651156 8531bb5 5df6164 8531bb5 5df6164 8531bb5 2651156 8531bb5 2651156 8531bb5 2651156 8531bb5 0dff71c 2651156 8531bb5 0dff71c 2651156 0dff71c 2651156 8531bb5 2651156 8531bb5 5df6164 0dff71c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import os
from dotenv import load_dotenv
import streamlit as st
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader, CSVLoader
import tempfile
# Load environment variables
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
# Custom Prompt Template
custom_template = """
<s>[INST] You are an Expert PDF and document assistant. Follow these instructions:
1. Greet the user and introduce yourself as a professional document assistant.
2. Answer user queries based on the document content. If a question is out of scope, politely end the conversation.
CHAT HISTORY: {chat_history}
QUESTION: {question}
ANSWER:
</s>[INST]
"""
CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template)
# Function to extract text from documents
def get_document_text(uploaded_files):
documents = []
for uploaded_file in uploaded_files:
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[-1]) as temp_file:
temp_file.write(uploaded_file.read())
temp_file_path = temp_file.name
# Load document based on its type
if uploaded_file.name.endswith(".pdf"):
loader = PyPDFLoader(temp_file_path)
documents.extend(loader.load())
elif uploaded_file.name.endswith(".docx") or uploaded_file.name.endswith(".doc"):
loader = Docx2txtLoader(temp_file_path)
documents.extend(loader.load())
elif uploaded_file.name.endswith(".txt"):
loader = TextLoader(temp_file_path)
documents.extend(loader.load())
elif uploaded_file.name.endswith(".csv"):
loader = CSVLoader(temp_file_path)
documents.extend(loader.load())
return documents
# Split text into chunks
def get_chunks(documents):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
return [chunk for doc in documents for chunk in text_splitter.split_text(doc.page_content)]
# Create vectorstore
def get_vectorstore(chunks):
embeddings = OpenAIEmbeddings()
return FAISS.from_texts(texts=chunks, embedding=embeddings)
# Create a conversational chain
def get_conversationchain(vectorstore):
llm = ChatOpenAI(temperature=0.4, model_name='gpt-4o-mini')
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
return ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
condense_question_prompt=CUSTOM_QUESTION_PROMPT,
memory=memory
)
# Handle user questions and update chat history
def handle_question(question):
if not st.session_state.conversation:
st.warning("Please process your documents first.")
return
response = st.session_state.conversation({'question': question})
st.session_state.chat_history = response['chat_history']
for i, msg in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.markdown(f"**You:** {msg.content}")
else:
st.markdown(f"**Bot:** {msg.content}")
# Main Streamlit app
def main():
st.set_page_config(page_title="Chat with Documents", page_icon="π")
st.title("π Chat with Your Documents")
st.sidebar.title("Upload Your Files")
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
# File uploader
uploaded_files = st.sidebar.file_uploader("Upload your files (PDF, DOCX, TXT, CSV):", accept_multiple_files=True)
# Process button
if st.sidebar.button("Process Documents"):
if uploaded_files:
with st.spinner("Processing documents..."):
# Extract text and create conversation chain
raw_documents = get_document_text(uploaded_files)
text_chunks = get_chunks(raw_documents)
vectorstore = get_vectorstore(text_chunks)
st.session_state.conversation = get_conversationchain(vectorstore)
st.success("Documents processed successfully!")
else:
st.warning("Please upload at least one document.")
# User input
question = st.text_input("Ask a question about the uploaded documents:")
if question:
handle_question(question)
if __name__ == '__main__':
main()
|