Test-CHATBOT / app.py
annas4421's picture
Update app.py
15e8427 verified
raw
history blame
5.46 kB
import os
from dotenv import load_dotenv
import streamlit as st
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader, CSVLoader
# Load environment variables from .env
load_dotenv()
from openai import OpenAI
api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=api_key)
# Custom template to guide the LLM
custom_template = """
<s>[INST]You will start the conversation by greeting the user and introducing yourself as an Expert PDF documents analyzer and assistant,
stating your availability for assistance. Your next step will depend on the user's response.
If the user expresses a need for assistance in pdf or document, you will ask them to describe their question.
However, if the user asks questions out of context from the knowledge base, you will immediately thank them and
say goodbye, ending the conversation. Remember to base your responses on the user's needs, providing accurate and
concise information regarding the data within the knowledge base. Your interactions should be professional and
focused, ensuring the user's queries are addressed efficiently without deviating from the set flows.
CHAT HISTORY: {chat_history}
QUESTION: {question}
ANSWER:
</s>[INST]
"""
CUSTOM_QUESTION_PROMPT = PromptTemplate.from_template(custom_template)
# Convert text to chunks
def get_chunks(documents):
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len)
chunks = [chunk for doc in documents for chunk in text_splitter.split_text(doc.page_content)]
return chunks
# Create vectorstore using OpenAI embeddings and FAISS
def get_vectorstore(chunks):
embeddings = OpenAIEmbeddings()
vectorstore = FAISS.from_texts(texts=chunks, embedding=embeddings)
return vectorstore
# Create conversation chain for LLM interaction
def get_conversationchain(vectorstore):
llm = ChatOpenAI(temperature=0.4, model_name='gpt-4')
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
condense_question_prompt=CUSTOM_QUESTION_PROMPT,
memory=memory
)
return conversation_chain
# Extract text from various document types including PDFs, TXT, DOCX, and CSV.
import tempfile
def get_document_text(uploaded_files):
documents = []
for uploaded_file in uploaded_files:
# Create a temporary file to save the uploaded file
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[-1]) as temp_file:
temp_file.write(uploaded_file.read())
temp_file_path = temp_file.name
# Check the file extension and load accordingly
if uploaded_file.name.endswith(".pdf"):
loader = PyPDFLoader(temp_file_path)
documents.extend(loader.load())
elif uploaded_file.name.endswith(".docx") or uploaded_file.name.endswith(".doc"):
loader = Docx2txtLoader(temp_file_path)
documents.extend(loader.load())
elif uploaded_file.name.endswith(".txt"):
loader = TextLoader(temp_file_path)
documents.extend(loader.load())
elif uploaded_file.name.endswith(".csv"):
loader = CSVLoader(temp_file_path)
documents.extend(loader.load())
print("Number of documents:", len(documents))
return documents
# Function to process and handle a user's query
def handle_question(conversation_chain, question):
response = conversation_chain({'question': question})
return response['answer']
def main():
st.set_page_config(page_title="Chat with multiple documents", page_icon=":books:")
st.header("Chat with your documents :books:")
if "conversation" not in st.session_state:
st.session_state.conversation = None
uploaded_files = st.file_uploader("Upload your files (PDF, DOCX, TXT, CSV):", accept_multiple_files=True)
if st.button("Process"):
if uploaded_files:
with st.spinner("Processing documents..."):
# Extract text from the uploaded documents
raw_documents = get_document_text(uploaded_files)
# Convert text into chunks
text_chunks = get_chunks(raw_documents)
# Create vectorstore
vectorstore = get_vectorstore(text_chunks)
# Create conversation chain
st.session_state.conversation = get_conversationchain(vectorstore)
st.success("Documents processed successfully!")
else:
st.warning("Please upload at least one document.")
question = st.text_input("Ask a question about the uploaded documents:")
if question and st.session_state.conversation:
handle_question(st.session_state.conversation, question)
elif question:
st.warning("Please process your documents first.")
if __name__ == '__main__':
main()